Skip to main content

Measurement and Analysis of NMR Residual Dipolar Couplings for the Study of Intrinsically Disordered Proteins

  • Protocol
  • First Online:
Intrinsically Disordered Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 895))

Abstract

Intrinsically disordered proteins (IDPs) are predicted to represent a significant fraction of all functional proteins. Their inherent plasticity allows them to sample more efficiently their surroundings and thereby increase the probability of interaction with one or several different biological partners. Due to their high flexibility, IDPs cannot be represented by a single, three-dimensional structure; rather, an ensemble description can be invoked, where the protein is assumed to interconvert between different conformations. This chapter focuses on the use of NMR spectroscopy to characterize the dynamic behavior of IDPs, in particular residual dipolar couplings, that provide highly sensitive tools for the study of intrinsic structural propensity and conformational transitions accompanying protein function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41:6572–6582

    Article  Google Scholar 

  2. Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physicists. Protein Sci 11:739–756

    Article  PubMed  CAS  Google Scholar 

  3. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  PubMed  CAS  Google Scholar 

  4. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human disease: introducing the D2 concept. Annu Rev Biophys 37:215–246

    Article  PubMed  CAS  Google Scholar 

  5. Wright PE, Dyson HJ (2009) Linking holding and binding. Curr Opin Struct Biol 19:31–38

    Article  PubMed  CAS  Google Scholar 

  6. Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19:23–30

    Article  PubMed  CAS  Google Scholar 

  7. Bernadó P, Blackledge M (2010) Structural biology: proteins in dynamic equilibrium. Nature 468:1046–1048

    Article  PubMed  Google Scholar 

  8. Fuxreiter M, Simon I, Friedrich P, Tompa P (2004) Preformed structural elements feature in partner recognition by intrinsically disordered proteins. J Mol Biol 338:1015–1026

    Article  PubMed  CAS  Google Scholar 

  9. Dyson HJ, Wright PE (2004) Unfolded proteins and protein holding studied by NMR. Chem Rev 104:3607–3622

    Article  PubMed  CAS  Google Scholar 

  10. Prestegard JH, Al-Hashimi HM, Tolman JR (2000) NMR structures of biomolecules using field oriented media and residual dipolar couplings. Q Rev Biophys 33:371–424

    Article  PubMed  CAS  Google Scholar 

  11. Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12:1–16

    Article  PubMed  CAS  Google Scholar 

  12. Blackledge M (2005) Recent progress in the study of biomolecular structure and dynamics in solution from residual bipolar couplings. Prog Nucl Magn Reson Spectrosc 46:23–61

    Article  CAS  Google Scholar 

  13. Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114

    Article  PubMed  CAS  Google Scholar 

  14. Prestegard JH, Bougault CM, Kishore AI (2004) Residual bipolar couplings in structure determination of biomolecules. Chem Rev 104:3519–3540

    Article  PubMed  CAS  Google Scholar 

  15. Sanders CR II, Schwonek JP (1992) Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine. Biochemistry 31:8898–8905

    Article  PubMed  CAS  Google Scholar 

  16. Gaemers S, Bax A (2001) Morphology of three lyotropic liquid crystalline biological NMR media studied by translational difussion anisotropy. J Am Chem Soc 123:12342–12352

    Article  Google Scholar 

  17. Zweckstetter M, Bax A (2000) Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J Am Chem Soc 122:3791–3792

    Article  CAS  Google Scholar 

  18. Losonczi JA, Prestegard JH (1998) Improved dilute solutions for high-resolution NMR of biological macromolecules. J Biomol NMR 12:447–451

    Article  PubMed  CAS  Google Scholar 

  19. Ramírez BE, Bax A (1998) Modulation of the alignment tensor of macromolecules dissolved in a diluted crystalline medium. J Am Chem Soc 120:9106–9107

    Article  Google Scholar 

  20. Prosser RS, Hwang JS, Vold RR (1998) Magnetically aligned phospholipid bilayers with positive ordering: a new model membrane system. Biophys J 74:2405–2418

    Article  PubMed  CAS  Google Scholar 

  21. Clore GM, Starich MR, Gronenborn AM (1998) Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses. J Am Chem Soc 120:10571–10572

    Article  CAS  Google Scholar 

  22. Hansen MR, Mueller L, Pardi A (1998) Tunable alignment of macromolecules by filamentous phage yields bipolar coupling interactions. Nat Struct Biol 5:1065–1074

    Article  PubMed  CAS  Google Scholar 

  23. Zweckstetter M, Bax A (2001) Characterization of molecular alignment in aqueous suspension of Pf1 bacteriophage. J Biomol NMR 20:365–377

    Article  PubMed  CAS  Google Scholar 

  24. Rückert M, Otting G (2000) Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J Am Chem Soc 122:7793–7797

    Article  Google Scholar 

  25. Prosser RS, Losonczi JA, Shiyanovskaya IV (1998) Use of a novel aqueous liquid crystalline médium for high resolution NMR of macromolecules in solution. J Am Chem Soc 120:11010–11011

    Article  CAS  Google Scholar 

  26. Barrientos LG, Dolan C, Gronenborn AM (2000) Characterization of surfactant liquid crystalline phases suitable for molecular alignment and measurement of dipolar couplings. J Biomol NMR 16:329–337

    Article  PubMed  CAS  Google Scholar 

  27. Sass J, Cordier F, Hoffman A, Rogowski M, Cousin A, Omichinski JG, Löwen H, Grzesiek S (1999) Purple membrane induced alignment of biological macromolecules in the magnetic field. J Am Chem Soc 121:2047–2055

    Article  CAS  Google Scholar 

  28. Koenig BW, Hu JS, Ottiger M, Hendler RW, Bax A (1999) NMR measurement of bipolar couplings to purple membrane fragments. J Am Chem Soc 121:1385–1386

    Article  CAS  Google Scholar 

  29. Fleming K, Gray D, Prasannan S, Mathews S (2000) Cellulose crystallites: a new robust liquid crystalline médium for the measurement of residual bipolar couplings. J Am Chem Soc 122:5224–5225

    Article  CAS  Google Scholar 

  30. Lorieau J, Yao L, Bax A (2008) Liquid crystalline phase of G-tetrad DNA for NMR study of detergent solubilized proteins. J Am Chem Soc 130:7536–7537

    Article  PubMed  CAS  Google Scholar 

  31. Ma J, Goldberg GI, Tjandra N (2008) Weak alignment of biomacromolecules in collagen gels: an alternative way to yield residual bipolar couplings by NMR. J Am Chem Soc 130:16148–16149

    Article  PubMed  CAS  Google Scholar 

  32. Tycko R, Blanco FJ, Ishii Y (2000) Alignment of bioploymers in strained gels: a new way to create detectable dipole-dipole couplings in high-resolution biomolecular NMR. J Am Chem Soc 122:9340–9341

    Article  CAS  Google Scholar 

  33. Chou JJ, Gaemers S, Howder B, Louis JM, Bax A (2001) A simple apparatus for generating stretched polyacrilamide gels, yielding uniform alignment of proteins and detergent micelles. J Biomol NMR 21:377–382

    Article  PubMed  CAS  Google Scholar 

  34. Meier S, Häussinger D, Grzesiek S (2002) Charged acrylamide copolymer gels as media for weak alignment. J Biomol NMR 24:351–356

    Article  PubMed  CAS  Google Scholar 

  35. Sass HJ, Musco G, Stahl SJ, Wingfield PT, Grzesiek S (2000) Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes. J Biomol NMR 18:303–309

    Article  PubMed  CAS  Google Scholar 

  36. Riley SA, Giuliani JR, Augustine MP (2002) Capture and manipulation of magnetically aligned Pf1 with an aqueous polymer gel. J Magn Reson 159:82–86

    Article  PubMed  CAS  Google Scholar 

  37. Louhivuori M, Pääkkönen K, Fredriksson K, Permi P, Lounila J, Annila A (2003) On the origin of residual dipolar couplings from denatured proteins. J Am Chem Soc 125:15647–15650

    Article  PubMed  CAS  Google Scholar 

  38. Obolensky OI, Schlepckow K, Schwalbe H, Solov’yov AV (2007) Theoretical framework for NMR residual dipolar couplings in unfolded proteins. J Biomol NMR 39:1–16

    Article  PubMed  CAS  Google Scholar 

  39. Mohana-Borges R, Goto NK, Kroon GJ, Dyson HJ, Wright PE (2004) Structural characterization of unfolded status of apomyoglobin using residual dipolar couplings. J Mol Biol 340:1131.1142

    Article  PubMed  Google Scholar 

  40. Bernadó P, Blanchard L, Timmins P, Marion D, Ruigrok RWH, Blackledge M (2005) A structural model for unfolded proteins from residual bipolar couplings and small-angle X-ray scattering. Proc Natl Acad Sci USA 102:17002–17007

    Article  PubMed  Google Scholar 

  41. Novell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50:437–450

    Article  Google Scholar 

  42. Zweckstetter M (2008) NMR: prediction of molecular alignment from structure using the PALES software. Nat Protocol 3:679–690

    Article  CAS  Google Scholar 

  43. Marsh JA, Baker JM, Tollinger M, Forman-Kay J (2008) Calculation of residual bipolar couplings from disordered state ensembles using local alignment. J Am Chem Soc 130:7804–7805

    Article  PubMed  CAS  Google Scholar 

  44. Meier S, Blackledge M, Grzesiek S (2008) Conformational distributions of unfolded polypeptides from novel NMR techniques. J Chem Phys 128:052204

    Article  PubMed  Google Scholar 

  45. Jensen MR, Markwick PR, Meier S, Griesinger C, Zweckstetter M, Grzesiek S, Bernadó P, Blackledge M (2009) Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings. Structure 17:1669–1685

    Article  Google Scholar 

  46. Jensen MR, Houben K, Lescop E, Blanchard L, Ruigrok RWH, Blackledge M (2008) Quantitative conformational analysis of partially folded proteins from residual dipolar: application to the molecular recognition element of Sendai virus nucleoprotein. J Am Chem Soc 130:8055–8061

    Article  PubMed  CAS  Google Scholar 

  47. Jensen MR, Blackledge M (2008) On the origin of NMR dipolar waves in transient helical elements of partially folded proteins. J Am Chem Soc 130:11266–11267

    Article  PubMed  CAS  Google Scholar 

  48. Jensen MR, Salmon L, Nodet G, Blackledge M (2010) Defining conformational ensambles of intrinsically disordered and partially folded proteins directly from chemical shifts. J Am Chem Soc 132:1070–1072

    Google Scholar 

  49. Bernadó P, Bertoncini CW, Griesinger C, Zweckstetter M, Blackledge M (2005) Defining long-range order and local disorder in native α-synuclein using residual dipolar couplings. J Am Chem Soc 127:17968–17969

    Article  PubMed  Google Scholar 

  50. Salmon L, Nodet G, Ozenne V, Yin G, Jensen MR, Zweckstetter M, Blackledge M (2010) NMR characterization of long-range order in intrinsically disordered proteins. J Am Chem Soc 132:8407–8418

    Article  PubMed  CAS  Google Scholar 

  51. Mukrash MD, Markwick P, Biernat J, von Bergen M, Bernadó P, Griesinger C, Mandelkow E, Zweckstetter M, Blackledge M (2007) Highly populated conformations in natively unfolded tau protein identified from residual dipolar couplings and molecular simulation. J Am Chem Soc 129:5235–5243

    Article  Google Scholar 

  52. Meier S, Grzesiek S, Blackledge M (2007) Mapping the conformational landscape of urea-denatured ubiquitin using residual dipolar couplings. J Am Chem Soc 129:9799–9807

    Article  PubMed  CAS  Google Scholar 

  53. Bernadó P, Blackledge M (2009) A self-consistent description of the conformational behavior of chemically denatured proteins from NMR and small angle scattering. Biophys J 97:2839–2845

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pau Bernadó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Salmon, L., Jensen, M.R., Bernadó, P., Blackledge, M. (2012). Measurement and Analysis of NMR Residual Dipolar Couplings for the Study of Intrinsically Disordered Proteins. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 895. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-927-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-927-3_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-926-6

  • Online ISBN: 978-1-61779-927-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics