Skip to main content

Ensemble FRET Methods in Studies of Intrinsically Disordered Proteins

  • Protocol
  • First Online:
Intrinsically Disordered Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 895))

Abstract

The main structural characteristic of intrinsically disordered proteins (IDPs) or intrinsically disordered regions of globular proteins is that they exist as ensembles of multiple conformers which can continuously interconvert, and at times, form ensembles of a more restricted number of conformers. Characterization of the disordered state and transitions to partially or fully ordered states of such ensembles must be expressed in statistical terms, i.e., determination of probability distributions of the various conformers. This can be achieved by measurements of time-resolved dynamic non-radiative excitation energy transfer within ensembles of site-specifically labeled IDP molecules. Distributions of intramolecular segmental end-to-end distances and their fast fluctuations can be determined and fast and slow conformational transitions within selected sections of the molecule can be monitored and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The acronym FRET denoting fluorescence resonance energy transfer is inaccurate, because the transfer does not involve any fluorescence but non-radiative transfer of the electronic excitation energy of the donor. This mechanism does not depend on the fluorescence properties of the acceptor. The correct term should be EET representing electronic energy transfer or excitation energy transfer or RET for resonance energy transfer. However, since the term FRET has been accepted in the literature, we continue to use it here.

References

  1. Forster TH (1948) Zwischen molekulare energie wanderung und fluoreszenz. Ann Phys (Leipzig) 2:55–75

    CAS  Google Scholar 

  2. Forster TH (1959) Transfer mechanisms of electroinc excitation. Discuss Fraday Soc 27:7–17

    Article  Google Scholar 

  3. Forster TH (1965) Delocalized excitation and excitation transfer. In: Sinaonglu O (ed) Modern quantum chemistry, Istnabul lectures part III: action of light and organic crystals. Academic, New York, pp 93–137

    Google Scholar 

  4. Steinberg IZ (1971) Long-range nonradiative transfer of electronic excitation energy in proteins and polypeptides. Annu Rev Biochem 40:83–114

    Article  PubMed  CAS  Google Scholar 

  5. Stryer L, Thomas DD, Meares CF (1982) Diffusion-enhanced fluorescence energy transfer. Annu Rev Biophys Bioeng 11:203–222

    Article  PubMed  CAS  Google Scholar 

  6. Van Der Meer WB, Coker G III, Chen SYS (1994) Resonance energy transfer theory and data. VCH, New York

    Google Scholar 

  7. Haas E (2004) Fluorescence resonance energy transfer (FRET) and single molecule fluorescence detection studies of the mechanism of protein folding and unfolding. In: Kiefhaber T, Buchner J (eds) Protein folding handbook. Part I. Wiley-VCH Verlag GmbH & Co.KGaA, Weinheim, pp 573–633

    Google Scholar 

  8. Haas E, Steinberg IZ (1984) Intramolecular dynamics of chain molecules monitored by fluctuations in efficiency of excitation energy transfer. A theoretical study. Biophys J 46:429–437

    Article  PubMed  CAS  Google Scholar 

  9. Nettels D, Gopich IV, Hoffmann A, Schuler B (2007) Ultrafast dynamics of protein collapse from single-molecule photon statistics. Proc Natl Acad Sci U S A 104:2655–2660

    Article  PubMed  CAS  Google Scholar 

  10. Perrin J (1927) Fluorescence et induction moleculaire par sesonance. C R Hebd Seances Acad Sci 184:1097–1100

    CAS  Google Scholar 

  11. Weber G, Teale FJW (1959) Electronic energy transfer in haem proteins. Discuss Faraday Soc 27:134–151

    Article  Google Scholar 

  12. Latt SA, Cheung HT, Blout ER (1965) Energy transfer. A system with relatively fixed donor-acceptor separation. J Am Chem Soc 87:995–1003

    Article  PubMed  CAS  Google Scholar 

  13. Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA 58:719–726

    Article  PubMed  CAS  Google Scholar 

  14. Valeur B (2002) Molecular fluorescence principles and applications. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  15. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  16. Stryer L, Thomas DD, Carlsen WF (1982) Fluorescence energy transfer measurements of distances in rhodopsin and the purple membrane protein. Methods Enzymol 81:668–678

    Article  PubMed  CAS  Google Scholar 

  17. Wu P, Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218:1–13

    Article  PubMed  CAS  Google Scholar 

  18. Clegg RM (1992) Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol 211:353–388

    Article  PubMed  CAS  Google Scholar 

  19. Clegg RM (1996) Fluorescence resonance energy transfer. In: Wang XF, Brian H (eds) Fluorescence imaging spectroscopy and microscopy. Wiley, New York, pp 179–252

    Google Scholar 

  20. Edidin M (2003) Fluorescence resonance energy transfer: techniques for measuring molecular conformation and molecular proximity. Curr Protoc Immunol Chapter 18:Unit 18.10.

    Google Scholar 

  21. Cantor CR, Pechukas P (1971) Determination of distance distribution functions by singlet-singlet energy transfer. Proc Natl Acad Sci U S A 68:2099–2101

    Article  PubMed  CAS  Google Scholar 

  22. Haas E, Katchalsky-Katzir E, Steinberg IZ (1978) Brownian motion of the ends of oligopeptide chains in solution as estimated by energy transfer between the chain ends. Biopolymers 17:11–31

    Article  CAS  Google Scholar 

  23. Steinberg IZ, Haas E, Katchalsky-Katzir E (1983) Long-range non-radiative transfer of electronic excitation energy. In: Cundall RB, Dale RE (eds) Time resolved spectroscopy in biochemistry. Plenum Publishing Corporation, New York, pp 411–451

    Google Scholar 

  24. Beechem JM, Haas E (1989) Simultaneous determination of intramolecular distance distributions and conformational dynamics by global analysis of energy transfer measurements. Biophys J 55:1225–1236

    Article  PubMed  CAS  Google Scholar 

  25. Lakowicz JR, Kusba J, Wiczk W, Gryczynski I, Szmacinski H, Johnson ML (1991) Resolution of the conformational distribution and dynamics of a flexible molecule using frequency-domain fluorometry. Biophys Chem 39:79–84

    Article  PubMed  CAS  Google Scholar 

  26. Chandrasekhar S (1943) Stochastic problems in physics and astronomy. Rev Mod Phys 15:1–89

    Article  Google Scholar 

  27. Kim J, Lee M (2004) Observation of multi-step conformation switching in beta-amyloid peptide aggregation by fluorescence resonance energy transfer. Biochem Biophys Res Commun 316:393–397

    Article  PubMed  CAS  Google Scholar 

  28. Gustiananda M, Liggins JR, Cummins PL, Gready JE (2004) Conformation of prion protein repeat peptides probed by FRET measurements and molecular dynamics simulations. Biophys J 86:2467–2483

    Article  PubMed  CAS  Google Scholar 

  29. Kim Y, Ho SO, Gassman NR, Korlann Y, Landorf EV, Collart FR, Weiss S (2008) Efficient site-specific labeling of proteins via cysteines. Bioconjug Chem 19:786–791

    Article  PubMed  CAS  Google Scholar 

  30. Garzon-Rodriguez W, Sepulveda-Becerra M, Milton S, Glabe CG (1997) Soluble amyloid Abeta-(1–40) exists as a stable dimer at low concentrations. J Biol Chem 272:21037–21044

    Article  PubMed  CAS  Google Scholar 

  31. Navon A, Ittah V, Landsman P, Scheraga HA, Haas E (2001) Distributions of intramolecular distances in the reduced and denatured states of bovine pancreatic ribonuclease A. Folding initiation structures in the C-terminal portions of the reduced protein. Biochemistry 40:105–118

    Article  PubMed  CAS  Google Scholar 

  32. Lakowicz JR, Kusba J, Szmacinski H, Gryczynski I, Eis PS, Wiczk W, Johnson ML (1991) Resolution of end-to-end diffusion coefficients and distance distributions of flexible molecules using fluorescent donor-acceptor and donor-quencher pairs. Biopolymers 31:1363–1378

    Article  PubMed  CAS  Google Scholar 

  33. Grupi A, Haas E (2011) Segmental conformational disorder and dynamics in the intrinsically disordered protein alpha-synuclein and its chain length dependence. J Mol Biol 405:1267–1283

    Article  PubMed  CAS  Google Scholar 

  34. Lee JC, Langen R, Hummel PA, Gray HB, Winkler JR (2004) Alpha-synuclein structures from fluorescence energy-transfer kinetics: implications for the role of the protein in Parkinson disease. Proc Natl Acad Sci USA 101:16466–16471

    Article  PubMed  CAS  Google Scholar 

  35. Liu DR, Magliery TJ, Pastrnak M, Schultz PG (1997) Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci USA 94:10092–10097

    Article  PubMed  CAS  Google Scholar 

  36. Buckler DR, Haas E, Scheraga HA (1993) C-terminal labeling of ribonuclease A with an extrinsic fluorescent probe by carboxypeptidase Y-catalyzed transpeptidation in the presence of urea. Anal Biochem 209:20–31

    Article  PubMed  CAS  Google Scholar 

  37. Szilvay GR, Blenner MA, Shur O, Cropek DM, Banta S (2009) A FRET-based method for probing the conformational behavior of an intrinsically disordered repeat domain from Bordetella pertussis adenylate cyclase. Biochemistry 48:11273–11282

    Article  PubMed  CAS  Google Scholar 

  38. Amir D, Haas E (1987) Estimation of intramolecular distance distributions in bovine pancreatic trypsin inhibitor by site-specific labeling and nonradiative excitation energy-transfer measurements. Biochemistry 26:2162–2175

    Article  PubMed  CAS  Google Scholar 

  39. Santoro SW, Anderson JC, Lakshman V, Schultz PG (2003) An archaebacteria-derived glutamyl-tRNA synthetase and tRNA pair for unnatural amino acid mutagenesis of proteins in Escherichia coli. Nucleic Acids Res 31:6700–6709

    Article  PubMed  CAS  Google Scholar 

  40. Takashi R (1988) A novel actin label: a fluorescent probe at glutamine-41 and its consequences. Biochemistry 27:938–943

    Article  PubMed  CAS  Google Scholar 

  41. Folk JE, Chung SI (1985) Transglutaminases. Methods Enzymol 113:358–375

    Article  PubMed  CAS  Google Scholar 

  42. Fink ML, Chung SI, Folk JE (1980) Gamma-glutamylamine cyclotransferase: specificity toward epsilon-(L-gamma-glutamyl)-L-lysine and related compounds. Proc Natl Acad Sci U S A 77:4564–4568

    Article  PubMed  CAS  Google Scholar 

  43. Lymperopoulos K, Kiel A, Seefeld A, Stohr K, Herten DP (2010) Fluorescent probes and delivery methods for single-molecule experiments. Chemphyschem 11:43–53

    Article  PubMed  CAS  Google Scholar 

  44. Grupi A, Haas E (2011) Time-resolved FRET detection of subtle temperature-induced conformational biases in ensembles of alpha-synuclein molecules. J Mol Biol 411(1):234–47

    Article  PubMed  CAS  Google Scholar 

  45. Jacob MH, Amir D, Ratner V, Gussakowsky E, Haas E (2005) Predicting reactivities of protein surface cysteines as part of a strategy for selective multiple labeling. Biochemistry 44:13664–13672

    Article  PubMed  CAS  Google Scholar 

  46. Jager M, Michalet X, Weiss S (2005) Protein-protein interactions as a tool for site-specific labeling of proteins. Protein Sci 14:2059–2068

    Article  PubMed  Google Scholar 

  47. Erbse AH, Berlinberg AJ, Cheung CY, Leung WY, Falke JJ (2011) OS-FRET: a new one-sample method for improved FRET measurements. Biochemistry 50:451–457

    Article  PubMed  CAS  Google Scholar 

  48. Epe B, Woolley P, Steinhauser KG, Littlechild J (1982) Distance measurement by energy transfer: the 3′ end of 16-S RNA and proteins S4 and S17 of the ribosome of Escherichia coli. Eur J Biochem 129:211–219

    Article  PubMed  CAS  Google Scholar 

  49. Flamion PJ, Cachia C, Schreiber JP (1992) Non-linear least-squares methods applied to the analysis of fluorescence energy transfer measurements. J Biochem Biophys Methods 24:1–13

    Article  PubMed  CAS  Google Scholar 

  50. Brand L (1992) Numerical computer methods. In: Brand L, Johnson ML (eds) Methods in enzymology. Academic, San Diego, pp 636–675

    Google Scholar 

  51. Grinvald A, Steinberg IZ (1974) On the analysis of fluorescence decay kinetics by the method of least-squares. Anal Biochem 59:583–598

    Article  PubMed  CAS  Google Scholar 

  52. Brochon JC (1994) Maximum entropy method of data analysis in time-resolved spectroscopy. Methods Enzymol 240:262–311

    Article  PubMed  CAS  Google Scholar 

  53. Lakshmikanth GS, Sridevi K, Krishnamoorthy G, Udgaonkar JB (2001) Structure is lost incrementally during the unfolding of barstar. Nat Struct Biol 8:799–804

    Article  PubMed  CAS  Google Scholar 

  54. Beechem JM, Brand L (1985) Time-resolved fluorescence of proteins. Annu Rev Biochem 54:43–71

    Article  PubMed  CAS  Google Scholar 

  55. Ameloot M, Beechem JM, Brand L (1986) Simultaneous analysis of multiple fluorescence decay curves by Laplace transforms. Deconvolution with reference or excitation profiles. Biophys Chem 23:155–171

    Article  PubMed  CAS  Google Scholar 

  56. Lanczos C (1956) Applied analysis. Prentice Hall Inc., Engelwood Cliffs, pp 272–304

    Google Scholar 

  57. Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York

    Google Scholar 

  58. Ames WF (1977) Numerical methods for partial differential equations, 2nd edn. Academic, New York

    Google Scholar 

  59. Press WH, Flannery BP, Teukolski SA, Vetterling WF (1989) Numerical recipes: the Art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  60. Edelhoch H, Brand L, Wilcheck M (1963) Fluorescence studies of tryptophyl peptides. Isr J Chem 1:1–2

    Google Scholar 

  61. Edelhoch H, Brand L, Wilchek M (1967) Fluorescence studies with tryptophyl peptides. Biochemistry 6:547–559

    Article  PubMed  CAS  Google Scholar 

  62. Kaylor J, Bodner N, Edridge S, Yamin G, Hong DP, Fink AL (2005) Characterization of oligomeric intermediates in alpha-synuclein fibrillation: FRET studies of Y125W/Y133F/Y136F alpha-synuclein. J Mol Biol 353:357–372

    Article  PubMed  CAS  Google Scholar 

  63. Rasia RM, Bertoncini CW, Marsh D, Hoyer W, Cherny D, Zweckstetter M, Griesinger C, Jovin TM, Fernandez CO (2005) Structural characterization of copper(II) binding to alpha-synuclein: insights into the bioinorganic chemistry of Parkinson disease. Proc Natl Acad Sci U S A 102:4294–4299

    Article  PubMed  CAS  Google Scholar 

  64. Bertoncini CW, Jung YS, Fernandez CO, Hoyer W, Griesinger C, Jovin TM, Zweckstetter M (2005) Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proc Natl Acad Sci U S A 102:1430–1435

    Article  PubMed  CAS  Google Scholar 

  65. Celej MS, Caarls W, Demchenko AP, Jovin TM (2009) A triple-emission fluorescent probe reveals distinctive amyloid fibrillar polymorphism of wild-type alpha-synuclein and its familial Parkinson disease mutants. Biochemistry 48:7465–7472

    Article  PubMed  CAS  Google Scholar 

  66. Veldhuis G, Segers-Nolten I, Ferlemann E, Subramaniam V (2009) Single-molecule FRET reveals structural heterogeneity of SDS-bound alpha-synuclein. Chembiochem 10:436–439

    Article  PubMed  CAS  Google Scholar 

  67. von Bergen M, Li L, Mandelkow E (2005) Intrinsic fluorescent detection of tau conformation and aggregation. Methods Mol Biol 299:175–184

    Google Scholar 

  68. Jeganathan S, von Bergen M, Brutlach H, Steinhoff HJ, Mandelkow E (2006) Global hairpin folding of tau in solution. Biochemistry 45:2283–2293

    Article  PubMed  CAS  Google Scholar 

  69. Huang TH, Fraser PE, Chakrabartty A (1997) Fibrillogenesis of Alzheimer Abeta peptides studied by fluorescence energy transfer. J Mol Biol 269:214–224

    Article  PubMed  CAS  Google Scholar 

  70. Shi Y, Stouten PF, Pillalamarri N, Barile L, Rosal RV, Teichberg S, Bu Z, Callaway DJ (2006) Quantitative determination of the topological propensities of amyloidogenic peptides. Biophys Chem 120:55–61

    Article  PubMed  CAS  Google Scholar 

  71. Xu H, Tai J, Ye H, Kang CB, Yoon HS (2006) The N-terminal domain of tumor suppressor p53 is involved in the molecular interaction with the anti-apoptotic protein Bcl-Xl. Biochem Biophys Res Commun 341:938–944

    Article  PubMed  CAS  Google Scholar 

  72. Dawson R, Muller L, Dehner A, Klein C, Kessler H, Buchner J (2003) The N-terminal domain of p53 is natively unfolded. J Mol Biol 332:1131–1141

    Article  PubMed  CAS  Google Scholar 

  73. Huang F, Rajagopalan S, Settanni G, Marsh RJ, Armoogum DA, Nicolaou N, Bain AJ, Lerner E, Haas E, Ying L, Fersht AR (2009) Multiple conformations of full-length p53 detected with single-molecule fluorescence resonance energy transfer. Proc Natl Acad Sci USA 106:20758–20763

    Article  PubMed  CAS  Google Scholar 

  74. Eisinger J, Dale RE (1974) Letter: interpretation of intramolecular energy transfer experiments. J Mol Biol 84:643–647

    Article  PubMed  CAS  Google Scholar 

  75. Dale RE, Eisinger J (1976) Intramolecular energy transfer and molecular conformation. Proc Natl Acad Sci U S A 73:271–273

    Article  PubMed  CAS  Google Scholar 

  76. Dale RE, Eisinger J, Blumberg WE (1979) The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J 26:161–193

    Article  PubMed  CAS  Google Scholar 

  77. Selvin PR, Hearst JE (1994) Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer. Proc Natl Acad Sci U S A 91:10024–10028

    Article  PubMed  CAS  Google Scholar 

  78. Mersol JV, Wang H, Gafni A, Steel DG (1992) Consideration of dipole orientation angles yields accurate rate equations for energy transfer in the rapid diffusion limit. Biophys J 61:1647–1655

    Article  PubMed  CAS  Google Scholar 

  79. Haas E, Katchalski-Katzir E, Steinberg IZ (1978) Effect of the orientation of donor and acceptor on the probability of energy transfer involving electronic transitions of mixed polarization. Biochemistry 17:5064–5070

    Article  PubMed  CAS  Google Scholar 

  80. Albrecht AC (1960) Forbidden characterizing allowed electronic transitions. J Chem Phys 33:156

    Article  CAS  Google Scholar 

  81. Cortijo M, Steinberg IZ, Shaltiel S (1971) Fluorescence of glycogen phosphorylase b. Structural transitions and energy transfer. J Biol Chem 246:933–938

    PubMed  CAS  Google Scholar 

  82. Mansoor SE, Farrens DL (2004) High-throughput protein structural analysis using site-directed fluorescence labeling and the bimane derivative (2-pyridyl)dithiobimane. Biochemistry 43:9426–9438

    Article  PubMed  CAS  Google Scholar 

  83. McNulty BC, Tripathy A, Young GB, Charlton LM, Orans J, Pielak GJ (2006) Temperature-induced reversible conformational change in the first 100 residues of alpha-synuclein. Protein Sci 15:602–608

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisha Haas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Haas, E. (2012). Ensemble FRET Methods in Studies of Intrinsically Disordered Proteins. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 895. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-927-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-927-3_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-926-6

  • Online ISBN: 978-1-61779-927-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics