Skip to main content

Circular Dichroism Techniques for the Analysis of Intrinsically Disordered Proteins and Domains

  • Protocol
  • First Online:
Intrinsically Disordered Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 895))

Abstract

Circular dichroism (CD) spectroscopy is a simple and powerful technique, which allows for the assessment of the conformational properties of a protein or protein domain. Intrinsically disordered proteins (IDPs), as discussed throughout this series, differ from random coil polypeptides in that different regions present specific conformational preferences, exhibiting dynamic secondary structure content [1]. These dynamic secondary structure elements can be stabilized or perturbed by different chemical (solvent, ionic strength, pH) or physical (temperature) agents, by posttranslational modifications, and by ligands. This information is important for defining ID nature. As IDPs present dynamic conformations, circular dichroism measurements (and other approaches as well) should be carried out not as single spectra performed in unique conditions, but instead changing the chemical conditions and observing the behavior, as part of the determination of the ID nature.

In this chapter, we present the basic methodology for performing Far-UV CD measurements on a protein of interest and for identifying and characterizing intrinsically disordered regions, and several protocols for the analysis of residual secondary structure present in the protein under study. These techniques are straightforward to perform; they require minimal training and can be preliminary to more complex methodologies such as NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269:2–12

    Article  PubMed  CAS  Google Scholar 

  2. Woody RW (1996) Theory of circular dichorism of proteins. In: Fasman GD (ed) Circular dichroism and the conformational analysis of biomolecules. Plenum Press, New York, pp 25–67

    Google Scholar 

  3. Creighton TE (2010) Circular dichroism. In: Creighton, TE (ed) The physical and chemical basis of molecular biology. Helvetian Press, Eastbourne, pp 291-310

    Google Scholar 

  4. Fink AL, Creighton, TE (ed), (2005) Natively unfolded proteins. Curr Opin Struct Biol 15:35–41

    Article  PubMed  CAS  Google Scholar 

  5. Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK (2005) Natively disordered proteins. In: Buchner J, Kiefhaber T (eds) Protein folding handbook. Wiley, Weinheim, pp 275–357

    Chapter  Google Scholar 

  6. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331

    Article  PubMed  CAS  Google Scholar 

  7. Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804:1231–1264

    Article  PubMed  CAS  Google Scholar 

  8. Shi Z, Chen K, Liu Z, Kallenbach NR (2006) Conformation of the backbone in unfolded proteins. Chem Rev 106:1877–1897

    Article  PubMed  CAS  Google Scholar 

  9. Buck M (1998) Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Q Rev Biophys 31:297–355

    Article  PubMed  CAS  Google Scholar 

  10. Jasanoff A, Fersht AR (1994) Quantitative determination of helical propensities from trifluoroethanol titration curves. Biochemistry 33:2129–2135

    Article  PubMed  CAS  Google Scholar 

  11. Nelson JW, Kallenbach NR (1986) Stabilization of the ribonuclease S-peptide alpha-helix by trifluoroethanol. Proteins 1:211–217

    Article  PubMed  CAS  Google Scholar 

  12. Garcia-Alai MM, Gallo M, Salame M, Wetzler DE, McBride AA, Paci M, Cicero DO, de Prat-Gay G (2006) Molecular basis for phosphorylation-dependent, PEST-mediated protein turnover. Structure 14:309–319

    Article  PubMed  CAS  Google Scholar 

  13. Tiffany ML, Krimm S (1973) Extended conformations of polypeptides and proteins in urea and guanidine hydrochloride. Biopolymers 12:575–587

    Article  CAS  Google Scholar 

  14. Tiffany ML, Krimm S (1972) Effect of temperature on the circular dichroism spectra of polypeptides in the extended state. Biopolymers 11:2309–2316

    Article  PubMed  CAS  Google Scholar 

  15. Garcia-Alai MM, Alonso LG, de Prat-Gay G (2007) The N-terminal module of HPV16 E7 is an intrinsically disordered domain that confers conformational and recognition plasticity to the oncoprotein. Biochemistry 46:10405–10412

    Article  PubMed  CAS  Google Scholar 

  16. Chemes LB, Sanchez IE, Smal C, de Prat-Gay G (2010) Targeting mechanism of the retinoblastoma tumor suppressor by a prototypical viral oncoprotein. Structural modularity, intrinsic disorder and phosphorylation of human papillomavirus E7. FEBS J 277:973–988

    Article  PubMed  CAS  Google Scholar 

  17. Wetzler DE, Gallo M, Melis R, Eliseo T, Nadra AD, Ferreiro DU, Paci M, Sanchez IE, Cicero DO, de Prat Gay G (2009) A strained DNA binding helix is conserved for site recognition, folding nucleation, and conformational modulation. Biopolymers 91:432–443

    Article  PubMed  CAS  Google Scholar 

  18. Shi Z, Woody RW, Kallenbach NR (2002) Is polyproline II a major backbone conformation in unfolded proteins? Adv Protein Chem 62:163–240

    Article  PubMed  CAS  Google Scholar 

  19. Shi Z, Olson CA, Rose GD, Baldwin RL, Kallenbach NR (2002) Polyproline II structure in a sequence of seven alanine residues. Proc Natl Acad Sci U S A 99:9190–9195

    Article  PubMed  CAS  Google Scholar 

  20. Liu Z, Chen K, Ng A, Shi Z, Woody RW, Kallenbach NR (2004) Solvent dependence of PII conformation in model alanine peptides. J Am Chem Soc 126:15141–15150

    Article  PubMed  CAS  Google Scholar 

  21. de Prat Gay G (1996) Spectroscopic characterization of the growing polypeptide chain of the barley chymotrypsin inhibitor-2. Arch Biochem Biophys 335:1–7

    Article  PubMed  Google Scholar 

  22. Zhong L, Johnson WC Jr (1992) Environment affects amino acid preference for secondary structure. Proc Natl Acad Sci USA 89:4462–4465

    Article  PubMed  CAS  Google Scholar 

  23. Penrose KJ, Garcia-Alai M, de Prat-Gay G, McBride AA (2004) Casein Kinase II phosphorylation-induced conformational switch triggers degradation of the papillomavirus E2 protein. J Biol Chem 279:22430–22439

    Article  PubMed  CAS  Google Scholar 

  24. Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. Biophys J 92:1439–1456

    Article  PubMed  CAS  Google Scholar 

  25. He B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19:929–949

    Article  PubMed  CAS  Google Scholar 

  26. Chen YH, Yang JT, Chau KH (1974) Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry 13:3350–3359

    Article  PubMed  CAS  Google Scholar 

  27. Brito RM, Vaz WL (1986) Determination of the critical micelle concentration of surfactants using the fluorescent probe N-phenyl-1-naphthylamine. Anal Biochem 152:250–255

    Article  PubMed  CAS  Google Scholar 

  28. Ohlenschlager O, Seiboth T, Zengerling H, Briese L, Marchanka A, Ramachandran R, Baum M, Korbas M, Meyer-Klaucke W, Durst M, Gorlach M (2006) Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7. Oncogene 25:5953–5959

    Article  PubMed  CAS  Google Scholar 

  29. Smal C (2010) Oligomerización de la oncoproteína E7 del papilomavirus humano y su interacción con el regulador de la transcripción y replicación viral E2. In: Physics Department, PhD Thesis, University of Buenos Aires

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo de Prat-Gay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chemes, L.B., Alonso, L.G., Noval, M.G., de Prat-Gay, G. (2012). Circular Dichroism Techniques for the Analysis of Intrinsically Disordered Proteins and Domains. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 895. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-927-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-927-3_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-926-6

  • Online ISBN: 978-1-61779-927-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics