Skip to main content

In-Cell NMR of Intrinsically Disordered Proteins in Prokaryotic Cells

  • Protocol
  • First Online:
Intrinsically Disordered Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 895))

Abstract

In-cell NMR, i.e., the acquisition of heteronuclear multidimensional NMR of biomacromolecules inside living cells, is, to our knowledge, the only method for investigating the three-dimensional structure and dynamics of proteins at atomic detail in the intracellular environment. Since the inception of the method, intrinsically disordered proteins have been regarded as particular targets for in-cell NMR, due to their expected sensitivity to the molecular crowding in the intracellular environment. While both prokaryotic and eukaryotic cells can be used as host cells for in-cell NMR, prokaryotic in-cell NMR, particularly employing commonly used protein overexpression systems in Escherichia coli cells, is the most accessible approach. In this chapter we describe general procedures for obtaining in-cell NMR spectra in E. coli cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Serber Z, Dotsch V (2001) In-cell NMR spectroscopy. Biochemistry 40:14317–14323

    Article  PubMed  CAS  Google Scholar 

  2. Serber Z, Corsini L, Durst F, Dötsch V (2005) In-cell NMR spectroscopy. Method Enzymol 394:17–41

    Article  CAS  Google Scholar 

  3. Serber Z, Selenko P, Hänsel R, Reckel S, Löhr F, Ferrell JE, Wagner G, Dötsch V (2006) Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy. Nat Protoc 1:2701–2709

    Article  PubMed  CAS  Google Scholar 

  4. Burz DS, Dutta K, Cowburn D, Shekhtman A (2006) Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR). Nat Methods 3:91–93

    Article  PubMed  CAS  Google Scholar 

  5. Burz DS, Dutta K, Cowburn D, Shekhtman A (2006) In-cell NMR for protein-protein interactions (STINT-NMR). Nat Protoc 1:146–152

    Article  PubMed  CAS  Google Scholar 

  6. Reckel S, Hänsel R, Löhr F, Dötsch V (2007) In-cell NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 51:91–101

    Article  CAS  Google Scholar 

  7. Selenko P, Wagner G (2007) Looking into live cells with in-cell NMR spectroscopy. J Struct Biol 158:244–253

    Article  PubMed  CAS  Google Scholar 

  8. Pielak GJ, Li C, Miklos AC, Schlesinger AP, Slade KM, Wang GF, Zigoneanu IG (2009) Protein nuclear magnetic resonance under physiological conditions. Biochemistry 48:226–234

    Article  PubMed  CAS  Google Scholar 

  9. Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597–604

    Article  PubMed  CAS  Google Scholar 

  10. Serber Z, Keatinge-Clay AT, Ledwidge R, Kelly AE, Miller SM, Dötsch V (2001) High-resolution macromolecular NMR spectroscopy inside living cells. J Am Chem Soc 123:2446–2447

    Article  PubMed  CAS  Google Scholar 

  11. Serber Z, Ledwidge R, Miller SM, Dötsch V (2001) Evaluation of parameters critical to observing proteins inside living Escherichia coli by in-cell NMR spectroscopy. J Am Chem Soc 123:8895–8901

    Article  PubMed  CAS  Google Scholar 

  12. Wieruszeski JM, Bohin A, Bohin JP, Lippens G (2001) In vivo detection of the cyclic osmoregulated periplasmic glucan of Ralstonia solanacearum by high-resolution magic angle spinning NMR. J Magn Reson 151:118–123

    Article  PubMed  CAS  Google Scholar 

  13. Selenko P, Serber Z, Gade B, Ruderman J, Wagner G (2006) Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes. Proc Natl Acad Sci USA 103:11904–11909

    Article  PubMed  CAS  Google Scholar 

  14. Sakai T, Tochio H, Tenno T, Ito Y, Kokubo T, Hiroaki H, Shirakawa M (2006) In-cell NMR spectroscopy of proteins inside Xenopus laevis oocytes. J Biomol NMR 36:179–188

    Article  PubMed  CAS  Google Scholar 

  15. Bodart JF, Wieruszeski JM, Amniai L, Leroy A, Landrieu I, Rousseau-Lescuyer A, Vilain JP, Lippens G (2008) NMR observation of Tau in Xenopus oocytes. J Magn Reson 192:252–257

    Article  PubMed  CAS  Google Scholar 

  16. Inomata K, Ohno A, Tochio H, Isogai S, Tenno T, Nakase I, Takeuchi T, Futaki S, Ito Y, Hiroaki H, Shirakawa M (2009) High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458:106–109

    Article  PubMed  CAS  Google Scholar 

  17. Ogino S, Kubo S, Umemoto R, Huang S, Nishida N, Shimada I (2009) Observation of NMR signals from proteins introduced into living Mammalian cells by reversible membrane permeabilization using a pore-forming toxin, streptolysin O. J Am Chem Soc 131:10834–10835

    Article  PubMed  CAS  Google Scholar 

  18. Burz DS, Shekhtman A (2008) In-cell biochemistry using NMR spectroscopy. PLoS One 3:e2571

    Article  PubMed  Google Scholar 

  19. Augustus AM, Reardon PN, Spicer LD (2009) MetJ repressor interactions with DNA probed by in-cell NMR. Proc Natl Acad Sci USA 106:5065–5069

    Article  PubMed  CAS  Google Scholar 

  20. Li C, Charlton LM, Lakkavaram A, Seagle C, Wang G, Young GB, Macdonald JM, Pielak GJ (2008) Differential dynamical effects of macromolecular crowding on an intrinsically disordered protein and a globular protein: implications for in-cell NMR spectroscopy. J Am Chem Soc 130:6310–6311

    Article  PubMed  CAS  Google Scholar 

  21. Charlton LM, Barnes CO, Li C, Orans J, Young GB, Pielak GJ (2008) Residue-level interrogation of macromolecular crowding effects on protein stability. J Am Chem Soc 130:6826–6830

    Article  PubMed  CAS  Google Scholar 

  22. Xie J, Thapa R, Reverdatto S, Burz DS, Shekhtman A (2009) Screening of small molecule interactor library by using in-cell NMR spectroscopy (SMILI-NMR). J Med Chem 52:3516–3522

    Article  PubMed  CAS  Google Scholar 

  23. Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Walchli M, Smith BO, Shirakawa M, Guntert P, Ito Y (2009) Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458:102–105

    Article  PubMed  CAS  Google Scholar 

  24. Dedmon MM, Patel CN, Young GB, Pielak GJ (2002) FlgM gains structure in living cells. Proc Natl Acad Sci USA 99:12681–12684

    Article  PubMed  CAS  Google Scholar 

  25. Williams SP, Haggie PM, Brindle KM (1997) 19F NMR measurements of the rotational mobility of proteins in vivo. Biophys J 72:490–498

    Article  PubMed  CAS  Google Scholar 

  26. Ikeya T, Sasaki A, Sakakibara D, Shigemitsu Y, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Nietlispach D, Walchli M, Smith BO, Shirakawa M, Guntert P, Ito Y (2010) NMR protein structure determination in living E. coli cells using nonlinear sampling. Nat Protoc 5:1051–1060

    Article  PubMed  CAS  Google Scholar 

  27. McIntosh LP, Dahlquist FW (1990) Biosynthetic incorporation of 15N and 13C for assignment and interpretation of nuclear magnetic resonance spectra of proteins. Q Rev Biophys 23:1–38

    Article  PubMed  CAS  Google Scholar 

  28. Serber Z, Straub W, Corsini L, Nomura AM, Shimba N, Craik CS, de Montellano PO, Dötsch V (2004) Methyl groups as probes for proteins and complexes in in-cell NMR experiments. J Am Chem Soc 126:7119–7125

    Article  PubMed  CAS  Google Scholar 

  29. Rosen MK, Gardner KH, Willis RC, Parris WE, Pawson T, Kay LE (1996) Selective methyl group protonation of perdeuterated proteins. J Mol Biol 263:627–636

    Article  PubMed  CAS  Google Scholar 

  30. Li C, Wang GF, Wang Y, Creager-Allen R, Lutz EA, Scronce H, Slade KM, Ruf RA, Mehl RA, Pielak GJ (2010) Protein 19F NMR in Escherichia coli. J Am Chem Soc 132:321–327

    Article  PubMed  CAS  Google Scholar 

  31. Jones DH, Cellitti SE, Hao X, Zhang Q, Jahnz M, Summerer D, Schultz PG, Uno T, Geierstanger BH (2010) Site-specific labeling of proteins with NMR-active unnatural amino acids. J Biomol NMR 46:89–100

    Article  PubMed  CAS  Google Scholar 

  32. Schanda P, Brutscher B (2005) Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc 127:8014–8015

    Article  PubMed  CAS  Google Scholar 

  33. Schanda P, Van Melckebeke H, Brutscher B (2006) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128:9042–9043

    Article  PubMed  CAS  Google Scholar 

  34. Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP (1987) Exponential sampling, an alternative method for sampling in two-dimensional NMR experiments. J Magn Reson 73:69–77

    CAS  Google Scholar 

  35. Schmieder P, Stern AS, Wagner G, Hoch JC (1994) Improved resolution in triple-resonance spectra by nonlinear sampling in the constant-time domain. J Biomol NMR 4:483–490

    Article  PubMed  CAS  Google Scholar 

  36. Rovnyak D, Frueh DP, Sastry M, Sun ZYJ, Stern AS, Hoch JC, Wagner G (2004) Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J Magn Reson 170:15–21

    Article  PubMed  CAS  Google Scholar 

  37. Laue ED, Mayger MR, Skilling J, Staunton J (1986) Reconstruction of phase sensitive 2D NMR spectra by maximum entropy. J Magn Reson 68:14–29

    CAS  Google Scholar 

  38. Hoch JC, Stern AS (1996) NMR data processing. Wiley-Liss, New York

    Google Scholar 

  39. Jaravine V, Ibraghimov I, Orekhov VY (2006) Removal of a time barrier for high-resolution multidimensional NMR spectroscopy. Nat Methods 3:605–607

    Article  PubMed  CAS  Google Scholar 

  40. Marion D (2005) Fast acquisition of NMR spectra using Fourier transform of non-equispaced data. J Biomol NMR 32:141–150

    Article  PubMed  CAS  Google Scholar 

  41. Kazimierczuk K, Zawadzka A, Kozminski W, Zhukov I (2006) Random sampling of evolution time space and Fourier transform processing. J Biomol NMR 36:157–168

    Article  PubMed  CAS  Google Scholar 

  42. Kraulis PJ (1989) ANSIG: a program for the assignment of protein 1H 2D NMR spectra by interactive computer graphics. J Magn Reson 84:627–633

    CAS  Google Scholar 

  43. Kraulis PJ, Domaille PJ, Campbell-Burk SL, Van Aken T, Laue ED (1994) Solution structure and dynamics of Ras p21-GDP determined by heteronuclear three- and four-dimensional NMR spectroscopy. Biochemistry 33:3515–3531

    Article  PubMed  CAS  Google Scholar 

  44. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696

    Article  PubMed  CAS  Google Scholar 

  45. Johnson BA, Blevins RA (1994) NMR View: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614

    Article  PubMed  CAS  Google Scholar 

  46. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278:313–352

    PubMed  CAS  Google Scholar 

  47. Bartels C, Xia T, Billeter M, Güntert P, Wüthrich K (1995) The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J Biomol NMR 6:1–10

    Article  PubMed  CAS  Google Scholar 

  48. Güntert P (2003) Automated NMR protein structure calculation. Prog Nucl Magn Reson Spectrosc 43:105–125

    Article  Google Scholar 

  49. Linge JP, O’Donoghue SI, Nilges M (2001) Automated assignment of ambiguous nuclear overhauser effects with ARIA. Methods Enzymol 339:71–90

    Article  PubMed  CAS  Google Scholar 

  50. Panchal SC, Bhavesh NS, Hosur RV (2001) Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: application to unfolded proteins. J Biomol NMR 20:135–147

    Article  PubMed  CAS  Google Scholar 

  51. Yokoyama S, Hirota H, Kigawa T, Yabuki T, Shirouzu M, Terada T, Ito Y, Matsuo Y, Kuroda Y, Nishimura Y, Kyogoku Y, Miki K, Masui R, Kuramitsu S (2000) Structural genomics projects in Japan. Nat Struct Biol 7 Suppl: 943–945

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the CREST program of the Japan Science and Technology Agency (JST), the Molecular Ensemble Program of RIKEN, Grants-in-Aid for Scientific Research of Priority Areas on “Molecular Soft Interactions Regulating Membrane Interface of Biological Systems” and “Molecular Science for Supra Functional Systems―Development of Advanced Methods for Exploring Elementary Process”, and Grant-in-Aid for Scientific Research on Innovative Areas from the Japanese Ministry of Education, Sports, Culture, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ito, Y., Mikawa, T., Smith, B.O. (2012). In-Cell NMR of Intrinsically Disordered Proteins in Prokaryotic Cells. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 895. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-927-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-927-3_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-926-6

  • Online ISBN: 978-1-61779-927-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics