Skip to main content

Alpha Proton Detection Based Backbone Assignment of Intrinsically Disordered Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 895))

Abstract

Assignment of NMR resonance frequencies to a particular atom in the molecule establishes a vital step for any detailed structural study. Approaches for sequential assignment typically involve amide proton detection, which may become suboptimal in case of intrinsically disordered proteins (IDPs) at high pH and/or temperature. Here we describe an alternative approach: assignment protocol based on alpha proton detected triple-resonance experiments, which offer several advantages over well-established experiments relying on amide proton detection. Our experiments are suitable for studies of IDPs at any pH and enable sequential assignment of proline-rich segments.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Magn Reson Spectrosc 34:93–158

    Article  CAS  Google Scholar 

  2. Permi P, Annila A (2004) Coherence transfer in proteins. Prog Nucl Magn Reson Spectrosc 44:97–137

    Article  CAS  Google Scholar 

  3. Yamazaki T, Lee W, Arrowsmith CH, Muhandiram DR, Kay LE (1994) A suite of triple-resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high-sensitivity. J Am Chem Soc 116:11655–11666

    Article  CAS  Google Scholar 

  4. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12731

    Article  PubMed  CAS  Google Scholar 

  5. Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665

    Article  CAS  Google Scholar 

  6. Grzesiek S, Bax A (1993) The importance of not saturating H2O in protein NMR—application to sensitivity enhancement and NOE measurements. J Am Chem Soc 115:12593–12594

    Article  CAS  Google Scholar 

  7. Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Forman-Kay JD, Kay LE (1994) Backbone dynamics of a free and a phosphopeptide-complexed Src Homology 2 domain studied by 15N NMR relaxation. Biochemistry 33:5984–6003

    Article  PubMed  CAS  Google Scholar 

  8. Ikura M, Kay LE, Bax A (1990) A novel approach for sequential assignment of 1H, 13C, and 15N spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29:4659–4667

    Article  PubMed  CAS  Google Scholar 

  9. Kay LE, Ikura M, Tschudin R, Bax A (1990) Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514

    CAS  Google Scholar 

  10. Powers R, Gronenborn AM, Clore GM, Bax A (1991) Three-dimensional triple-resonance NMR of 13C/15N-enriched proteins using constant-time evolution. J Magn Reson 94:209–213

    CAS  Google Scholar 

  11. Wang A, Grzesiek S, Tschudin R, Lodi PJ, Bax A (1995) Sequential backbone assignment of isotopically enriched proteins in D20 by deuterium-decoupled HA(CA)N and HA(CACO)N. J Biomol NMR 5:376–382

    PubMed  CAS  Google Scholar 

  12. Bottomley MJ, Macias MJ, Liu Z, Sattler M (1999) A novel NMR experiment for the sequential assignment of proline residues and proline stretches in 13C/15N-labeled proteins. J Biomol NMR 13:381–385

    Article  PubMed  CAS  Google Scholar 

  13. Kanelis V, Donaldson L, Muhandiram DR, Rotin D, Forman-Kay JD, Kay LE (2000) Sequential assignment of proline-rich regions in proteins: application to modular binding domain complexes. J Biomol NMR 16:253–259

    Article  PubMed  CAS  Google Scholar 

  14. Sayers EW, Torchia DA (2001) Use of the carbonyl chemical shift to relieve degeneracies in triple-resonance assignment experiments. J Magn Reson 153:246–253

    Article  PubMed  CAS  Google Scholar 

  15. Mäntylahti S, Aitio O, Hellman M, Permi P (2010) HA-detected experiments for the backbone assignment of intrinsically disordered proteins. J Biomol NMR 47:171–181

    Article  PubMed  Google Scholar 

  16. Mäntylahti S, Hellman M, Permi P (2010) Extension of the HA-detection scheme: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins. Unpublished manuscript

    Google Scholar 

  17. Yao J, Dyson HJ, Wright PE (1997) Chemical shift dispersion and secondary structure prediction in unfolded and partly folded proteins. FEBS Lett 419:285–289

    Article  PubMed  Google Scholar 

  18. Permi P, Annila A (2001) A new approach for obtaining sequential assignment of large proteins. J Biomol NMR 20:127–133

    Article  PubMed  CAS  Google Scholar 

  19. Mäntylahti S, Tossavainen H, Hellman M, Permi P (2009) An intraresidual i(HCA)CO(CA)NH experiment for the assignment of main-chain resonances in 15N, 13C labeled proteins. J Biomol NMR 45:301–310

    Article  PubMed  Google Scholar 

  20. Shaka AJ (1985) Composite pulses for ultra-broadband spin inversion. Chem Phys Lett 120:201–205

    Article  CAS  Google Scholar 

  21. Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broad-band decoupling—Waltz-16. J Magn Reson 52:335–338

    CAS  Google Scholar 

  22. Kupće E, Wagner G (1995) Wideband homonuclear decoupling in protein spectra. J Magn Reson 109A:329–333

    Google Scholar 

  23. Marion D, Ikura M, Tschudin R, Bax A (1989) Rapid recording of 2D NMR-spectra without phase cycling—application to the study of hydrogen-exchange in proteins. J Magn Reson 85:393–399

    CAS  Google Scholar 

Download references

Acknowledgment

We thank Elina Ahovuo for excellent technical assistance. This work was supported by the grants 122170 and 131144 (to P.P.) from the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perttu Permi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Permi, P., Hellman, M. (2012). Alpha Proton Detection Based Backbone Assignment of Intrinsically Disordered Proteins. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 895. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-927-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-927-3_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-926-6

  • Online ISBN: 978-1-61779-927-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics