Skip to main content

Wide-Line NMR and Protein Hydration

  • Protocol
  • First Online:
Intrinsically Disordered Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 895))

Abstract

In this chapter, the reader is introduced to the basics of wide-line NMR, with particular focus on the following: (1) basic theoretical and experimental NMR elements, necessary before switching the spectrometer and designing the experiment, (2) models/theories for the interpretation of measured data, (3) definition of wide-line NMR spectrometry, the description of the measurement and evaluation variants, useful hints for the novice, (4) advice on selecting the solvent, which is not a trivial task, (5) a note of warning that not all data are acceptable in spite of the statistical confidence. Finally, we wrap up the chapter with the results on two proteins (a globular and an intrinsically disordered).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tompa P (2009) Structure and function of intrinsically disordered proteins. University of Cambridge, UK

    Book  Google Scholar 

  2. Uversky VN, Longhi S (eds) (2010) Instrumental analysis of intrinsically disordered proteins: assessing structure and conformation. Wiley, Hoboken, NJ

    Google Scholar 

  3. Saito N, Kobayashi Y (2001) The physical foundation of protein architecture. World Scientific, Singapore

    Book  Google Scholar 

  4. Antzutkin ON (2001) Molecular structure determination: applications in biology. In: Duer MJ (ed) Solid-state NMR spectroscopy: principles and applications. Wiley-Blackwell, Oxford

    Google Scholar 

  5. Shimonson T (2003) Electrostatics and dynamics of proteins. Rep Prog Phys 66:737–787

    Article  Google Scholar 

  6. Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739–756

    Article  PubMed  CAS  Google Scholar 

  7. Halle B (2004) Protein hydration dynamics in solution: a critical survey. Philos Trans R Soc Lond B: Biol Sci 359:1207–1224

    Article  CAS  Google Scholar 

  8. Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38

    Article  CAS  Google Scholar 

  9. Bloch F, Hansen WW, Packard M (1946) Nuclear induction. Phys Rev 69:127

    Article  Google Scholar 

  10. Abragam A (1961) The principles of nuclear magnetism. Clarendon, Oxford

    Google Scholar 

  11. Slichter CP (1990) Principles of magnetic resonance. Springer, Berlin

    Google Scholar 

  12. Fukushima E, Roeder SBW (1993) Experimental pulse NMR: a nuts and bolts approach. Westview, Boulder, CO

    Google Scholar 

  13. Andrew ER (1955) Nuclear magnetic resonance. Cambridge University Press, Cambridge

    Google Scholar 

  14. Mehring M (1976) High resolution NMR spectroscopy in solids. In: Diehl P, Fluck E, Kosfeld R (eds) NMR: basic principles and progress, vol 11. Springer, Berlin

    Google Scholar 

  15. Ernst R, Bodenhausen G, Wokaun A (1991) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon, Oxford

    Google Scholar 

  16. Ferrar TC, Becker ED (1971) Pulse and Fourier transform NMR. Academic, New York, London

    Google Scholar 

  17. Hennel JW, Klinowski J (1993) Fundamentals of nuclear magnetic resonance. Longman Scientific and Technical, Harlow

    Google Scholar 

  18. Van Vleck JH (1948) The dipolar broadening of magnetic resonance lines in crystals. Phys Rev 74:1168–1183

    Article  Google Scholar 

  19. Power WP, Wasylishen RE (1991) NMR studies of isolated spin pairs in the solid state. In: Webb GA (ed) Annual reports on NMR spectroscopy 23:1–84. Academic, London

    Google Scholar 

  20. Cory DG (1992) Solid state NMR imaging. In: Webb GA (ed) Annual reports on NMR spectroscopy 24:87–180. Academic, London

    Google Scholar 

  21. Noack F (1971) Nuclear magnetic relaxation spectroscopy. In: Diehl P, Fluck E, Kosfeld F (eds) NMR basic principles and progress 3:83–144. Springer, Berlin

    Google Scholar 

  22. Spiess HW (1978) Rotation of molecules and nuclear spin relaxation. In: Diehl P, Fluck E, Kosfeld F (eds) Dynamic NMR spectroscopy, NMR basic principles and progress 15:54–214. Springer, Berlin

    Google Scholar 

  23. Pfeifer H (1972) Nuclear magnetic resonance and relaxation of molecules absorbed on solids. In: Diehl P, Fluck E, Kosfeld F (eds) NMR basic principles and progress 7:53–153. Springer, Berlin

    Google Scholar 

  24. Barnaal D, Kopp M, Lowe IJ (1976) Study of HF doped ice by pulsed NMR. J Chem Phys 65:5495–5506

    Article  CAS  Google Scholar 

  25. Harper WP, Barnes RG (1976) A useful nuclear magnetic resonance lineshape function for metallic solids. J Magn Res 21:507–508

    CAS  Google Scholar 

  26. Powles JG, Carazza B (1970) In: Coogan CK et al (eds) Magnetic resonance. Plenum, New York, NY, pp 133–161

    Chapter  Google Scholar 

  27. Torrey HC (1949) Transient mutations in nuclear magnetic resonance. Phys Rev 76:1059–1068

    Article  Google Scholar 

  28. Hahn EL (1950) Nuclear induction due to free larmor precession. Phys Rev 77:297–298

    Article  CAS  Google Scholar 

  29. Hahn EL (1950) Spin echoes. Phys Rev 80:580–594

    Article  Google Scholar 

  30. Ernst RR, Anderson WA (1966) Application of Fourier transform spectroscopy to magnetic resonance. Rev Sci Instrum 37:93–102

    Article  CAS  Google Scholar 

  31. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638

    Article  CAS  Google Scholar 

  32. Meiboom S, Gill D (1958) Modified spin‐echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691

    Article  CAS  Google Scholar 

  33. Lowe IJ (1957) Double pulse nuclear resonance in solids. Bull Am Phys Soc 2:344

    Google Scholar 

  34. Powles JG, Mansfield P (1962) Double-pulse nuclear-resonance transients in solids. Phys Lett 2:58–59

    Article  CAS  Google Scholar 

  35. Mansfield P (1971) Pulsed NMR in solids. In: Emsley JW, Feeney J, Sutcliffe LH (eds) Progress in nuclear magnetic resonance spectroscopy, vol 8. Pergamon Press, Oxford, pp 41–101

    Google Scholar 

  36. Diakova G et al (2007) Changes in protein structure and dynamics as a function of hydration from 1H second moments. J Magn Reson 189:166–172

    Article  PubMed  CAS  Google Scholar 

  37. Tompa K et al (2009) Interfacial water at protein surfaces: wide-line NMR and DSC characterization of hydration in ubiquitin solutions. Biophys J 96:2789–2798

    Article  PubMed  CAS  Google Scholar 

  38. Garay-Arroyo A et al (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674

    Article  PubMed  CAS  Google Scholar 

  39. Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1994) Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol 35:225–231

    PubMed  CAS  Google Scholar 

  40. Tompa P et al (2006) Protein–water and protein–buffer interactions in the aqueous solution of an intrinsically unstructured plant dehydrin: NMR intensity and DSC aspects. Biophys J 91:2243–2249

    Article  PubMed  CAS  Google Scholar 

  41. Bokor M et al (2005) NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins. Biophys J 88:2030–2037

    Article  PubMed  CAS  Google Scholar 

  42. Grüner G, Tompa K (1968) Molekuláris mozgások vizsgálata szilárdtestekben NMR módszerrel. Kémiai Közlemények 30:315–356

    Google Scholar 

  43. Bokor M, Tompa P, Tompa K (2011) Wide-line NMR and relaxation characterization of interfacial water in protein solutions. In: 8th European Biophysics Congress, Budapest, Hungary, 23–27 August 2011

    Google Scholar 

  44. Cooke R, Kuntz JD (1974) The properties of water in biological systems. Annu Rev Biophys Bioeng 3:95–126

    Article  PubMed  CAS  Google Scholar 

  45. Gregory RB (1995) Protein–solvent interactions. CRC, New York

    Google Scholar 

  46. Teeter MM (1991) Water–protein interactions: theory and experiment. Annu Rev Biophys Biophys Chem 20:577–600

    Article  PubMed  CAS  Google Scholar 

  47. Russo D, Hura GL, Copley JRD (2007) Effects of hydration water on protein methyl group dynamics in solution. Phys Rev E 75:040902(R)

    Article  Google Scholar 

  48. Curtis JE, Tarek M, Tobias DJ (2004) Methyl group dynamics as a probe of the protein dynamical transition. J Am Chem Soc 126:15928–15929

    Article  PubMed  CAS  Google Scholar 

  49. Kuntz ID (1971) Hydration of macromolecules. III. Hydration of polypeptides. J Am Chem Soc 93:514–516

    Article  CAS  Google Scholar 

  50. Kuntz ID et al (1969) Hydration of macromolecules. Science 163:1329–1331

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hungarian Academy of Sciences, the International Senior Research Fellowship ISRF 067595 from the Wellcome Trust, and a Korean–Hungarian Joint Laboratory grant from Korea Research Council of Fundamental Science and Technology (KRCF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bokor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tompa, K., Bokor, M., Tompa, P. (2012). Wide-Line NMR and Protein Hydration. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 895. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-927-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-927-3_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-926-6

  • Online ISBN: 978-1-61779-927-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics