Skip to main content

Identification of Asp Isomerization in Proteins by 18O Labeling and Tandem Mass Spectrometry

  • Protocol
  • First Online:
Therapeutic Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 899))

Abstract

Isomerization of aspartic acid (Asp) to isoaspartic acid (isoAsp) via succinimide intermediate is a common route of degradation for proteins that can affect their structural integrity. As Asp/isoAsp is isobaric in mass, it is difficult to identify the site of modification by LC-MS/MS peptide mapping. Here, we describe an approach to label the Asp residue involved in isomerization at the protein level by hydrolyzing the succinimide intermediate in H 182 O. Tryptic digestion of this labeled protein will result in peptides containing the site of isomerization being 2 Da heavier than the 16O-containing counterparts, due to 18O incorporation during the hydrolysis process. Comparison of tandem mass spectra of isomerized peptides with and without 18O incorporation allows easy identification of the Asp residue involved. This method proved to be especially useful in identifying the sites when isomerization occurs in Asp-Asp motifs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wakankar AA, Borchardt RT (2006) Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization. J Pharm Sci 95:2321–2336

    Article  PubMed  CAS  Google Scholar 

  2. Vlasak J, Ionescu R (2008) Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods. Curr Pharm Biotechnol 9:468–481

    Article  PubMed  CAS  Google Scholar 

  3. Vlasak J, Bussat MC, Wang S, Wagner-Rousset E, Schaefer M, Klinguer-Hamour C, Kirchmeier M, Corvaia N, Ionescu R, Beck A (2009) Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody. Anal Biochem 392:145–154

    Article  PubMed  CAS  Google Scholar 

  4. Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. J Biol Chem 262:785–794

    PubMed  CAS  Google Scholar 

  5. Wakankar AA, Borchardt RT, Eigenbrot C, Shia S, Wang YJ, Shire SJ, Liu JL (2007) Aspartate isomerization in the complementarity-determining regions of two closely related monoclonal antibodies. Biochemistry 46:1534–1544

    Article  PubMed  CAS  Google Scholar 

  6. Chu GC, Chelius D, Xiao G, Khor HK, Coulibaly S, Bondarenko PV (2007) Accumulation of succinimide in a recombinant monoclonal antibody in mildly acidic buffers under elevated temperatures. Pharm Res 24:1145–1156

    Article  PubMed  CAS  Google Scholar 

  7. Xiao G, Bondarenko PV, Jacob J, Chu CG, Chelius D (2007) 18O labeling method for identification and quantification of succinimide in proteins. Anal Chem 79:2714–2721

    Article  PubMed  CAS  Google Scholar 

  8. Manning MC, Patel K, Borchard RT (1989) Stability of protein pharmaceuticals. Pharm Res 6:903–918

    Article  PubMed  CAS  Google Scholar 

  9. Clarke S, Stephenson RC, Lowenson JD (1992) Liability of asparagine and aspartic acid residues in proteins and peptides; spontaneous deamidation and isomerization reactions. In: Ahern TJ, Manning MC (eds) Stability of protein pharmaceuticals: Part A, Chemical and physical pathways of protein degradation. Plenum, New York, pp 1–29

    Google Scholar 

  10. Liu DT (1992) Deamidation: a source of microheterogeneity in pharmaceutical proteins. Trends Biotechnol 10:364–369

    Article  PubMed  CAS  Google Scholar 

  11. Cleland JL, Powell MF, Shire SJ (1993) The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst 10:307–377

    PubMed  CAS  Google Scholar 

  12. Aswad DW (1995) Deamidation and isoaspartate formation in peptides and proteins. CRC, Boca Raton

    Google Scholar 

  13. Powell MF (1996) A compendium and hydropathy/flexibility analysis of common reactive sites in proteins: reactivity at Asn, Asp, Gln and Met motifs in neutral pH solution. In: Pearlman R, Wang YJ (eds) Formulation, characterization, and stability of protein drugs: case histories. Plenum, New York, pp 1–140

    Google Scholar 

  14. Cacia J, Keck R, Presta LG, Frenz J (1996) Isomerization of an aspartic acid residue in the complementarity-determining regions of a recombinant antibody to human IgE: identification and effect on binding affinity. Biochemistry 35:1897–1903

    Article  PubMed  CAS  Google Scholar 

  15. Harris RJ, Kabakoff B, Macchi FD, Shen FJ, Kwong M, Andya JD, Shire SJ, Bjork N, Totpal K, Chen AB (2001) Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B 752:233–245

    Article  CAS  Google Scholar 

  16. Doyle HA, Gee RJ, Mamula MJ (2003) A failure to repair self-proteins leads to T cell hyperproliferation and autoantibody production. J Immunol 171:2840–2847

    PubMed  CAS  Google Scholar 

  17. Doyle HA, Zhou J, Wolff MJ, Harvey BP, Roman RM, Gee RJ, Koski RA, Mamula MJ (2006) Isoaspartyl posttranslational modification triggers anti-tumor T and B lymphocyte immunity. J Biol Chem 281:32676–32683

    Article  PubMed  CAS  Google Scholar 

  18. Yang ML, Doyle HA, Gee RJ, Lowenson JD, Clarke S, Lawson BR, Aswad DW, Mamula MJ (2006) Intracellular protein modification associated with altered T cell functions in autoimmunity. J Immunol 177:4541–4549

    PubMed  CAS  Google Scholar 

  19. Stephenson RC, Clarke S (1989) Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J Biol Chem 264:6164–6170

    PubMed  CAS  Google Scholar 

  20. Oliyai C, Borchardt RT (1993) Chemical pathways of peptide degradation IV: pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide. Pharm Res 10:95–102

    Article  PubMed  CAS  Google Scholar 

  21. Radkiewicz JL, Zipse H, Clarke S, Houk KN (2001) Neighboring side chain effects on asparaginyl and aspartyl degradation: an ab initio study of the relationship between peptide conformation and backbone NH acidity. J Am Chem Soc 123:3499–3506

    Article  PubMed  CAS  Google Scholar 

  22. Oliyai C, Borchardt RT (1994) Chemical pathways of peptide degradation. VI. Effect of the primary sequence on the pathways of degradation of aspartyl residues in model hexapeptides. Pharm Res 11:751–758

    Article  PubMed  CAS  Google Scholar 

  23. Potter SM, Henzel WJ, Aswad DW (1993) In-vitro aging of calmodulin generates isoaspartate at multiple asn-gly and asp-gly sites in calcium-binding domain-ii, domain-iii, and domain-iv. Protein Sci 2:1648–1663

    Article  PubMed  CAS  Google Scholar 

  24. Xiao G, Bondarenko PV (2008) Identification and quantification of degradations in the Asp–Asp motifs of a recombinant monoclonal antibody. J Pharm Biomed Anal 47:23–30

    Article  PubMed  CAS  Google Scholar 

  25. Zhang J, Yip H, Katta V (2011) Identification of isomerization and racemization of aspartate in the Asp-Asp motifs of a therapeutic protein. Anal Biochem 410:234–243

    Article  PubMed  CAS  Google Scholar 

  26. Donato AD, Ciardiello MA, de Nigris M, Piccoli R, Mazzarella L, D’Alessio G (1993) Selective deamidation of ribonuclease A. Isolation and characterization of the resulting isoaspartyl and aspartyl derivatives. J Biol Chem 268:4745–4751

    PubMed  Google Scholar 

  27. Kwong MY, Harris RJ (1993) Identification of succinimide sites in proteins by N-terminal sequence analysis after alkaline hydroxylamine cleavage. Protein Sci 3:147–149

    Article  Google Scholar 

  28. Zhang W, Czupryn JM, Boyle PT Jr, Amari J (2002) Characterization of asparagine deamidation and aspartate isomerization in recombinant human interleukin-11. Pharm Res 19:1223–1231

    Article  PubMed  CAS  Google Scholar 

  29. Sadakane Y, Yamazaki T, Nakagomi K, Akizawa T, Fujii N, Tanimura T, Kaneda M, Hatanaka Y (2003) Quantification of the isomerization of Asp residue in recombinant human alpha A-crystallin by reversed-phase HPLC. J Pharm Biomed Anal 30:1825–1833

    Article  PubMed  CAS  Google Scholar 

  30. Johnson BA, Shirokawa JM, Hancock WS, Spellman MW, Basa LJ, Aswad DW (1989) Formation of isoaspartate at two distinct sites during in vitro aging of human growth hormone. J Biol Chem 264:14262–14271

    PubMed  CAS  Google Scholar 

  31. Rehder DS, Chelius D, McAuley A, Dillon TM, Xiao G, Crouse-Zeineddini J, Vardanyan L, Perico N, Mukku V, Brems DN, Matsumura M, Bondarenko PV (2008) Isomerization of a single aspartyl residue of anti-epidermal growth factor receptor immunoglobulin γ2 antibody highlights the role avidity plays in antibody activity. Biochemistry 47:2518–2530

    Article  PubMed  CAS  Google Scholar 

  32. Cournoyer JJ, Pittman JL, Ivlevaver AB, Fallows E, Waskell L, Costello CE, O’Connor PB (2005) Deamidation: differentiation of aspartyl from isoaspartyl products in peptides by electron capture dissociation. Protein Sci 14:452–463

    Article  PubMed  CAS  Google Scholar 

  33. Cournoyer JJ, Lin C, O’Connor PB (2006) Detecting deamidation products in proteins by electron capture dissociation. Anal Chem 78:1264–1271

    Article  PubMed  CAS  Google Scholar 

  34. Cournoyer JJ, Lin C, Bowman MJ, O’Connor PB (2007) Quantitating the relative abundance of isoaspartyl residues in deamidated proteins by electron capture dissociation. J Am Soc Mass Spectrom 18:48–56

    Article  PubMed  CAS  Google Scholar 

  35. Chan WYK, Chan TWD, O’Connor PB (2010) Electron transfer dissociation with supplemental activation to differentiate aspartic and isoaspartic residues in doubly charged peptide cations. J Am Soc Mass Spectrom 21:1012–1015

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Clifford Quan for synthesis of peptide variants and Benson Gikanga for preparing the thermally stressed samples. We would also like to thank Reed Harris, John Stults, Mary Cromwell, and Charles Morgan for their valuable discussion and critical review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, J., Katta, V. (2012). Identification of Asp Isomerization in Proteins by 18O Labeling and Tandem Mass Spectrometry. In: Voynov, V., Caravella, J. (eds) Therapeutic Proteins. Methods in Molecular Biology, vol 899. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-921-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-921-1_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-920-4

  • Online ISBN: 978-1-61779-921-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics