Skip to main content

Method for the Quantification of Aquatic Primary Production and Net Ecosystem Metabolism Using In Situ Dissolved Oxygen Sensors

  • Protocol
  • First Online:
Molecular Biological Technologies for Ocean Sensing

Abstract

We present an example-based methodology for the “open-water” technique to determine net ecosystem metabolism (or net community metabolism) of coastal and oceanic environments using dissolved oxygen measurements collected with in situ sensors. We briefly discuss strategies for instrument deployment, data collection, and performance evaluation. The main focus is a presentation of the analytical steps necessary to convert raw dissolved oxygen measurements into daily estimates of primary production, aerobic respiration, and the resulting net metabolic sum. The data manipulation is based on a compilation of approaches from the literature that span multiple decades of research. We provide a summary of the foundational concepts, a brief discussion of the necessary assumptions, and a list of additional variables required for the parameterization of the individual components, such as the air–water diffusion term. The methods are presented in a step-by-step example format using representative data sets from two contrasting environments, the coastal ocean (Monterey Bay, California) and an estuary (Columbia River Estuary, Oregon/Washington).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caffrey JM (2003) Production, respiration and net ecosystem metabolism in U.S. estuaries. Environ Monit Assess 81:207–219

    Article  PubMed  Google Scholar 

  2. Weiss RF (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res A 17:721–735

    CAS  Google Scholar 

  3. Hanson PC, Carpenter SR, Kimura N, Wu C, Cornelius SP, Kratz TK (2008) Evaluation of metabolism models for free-water dissolved oxygen methods in lakes. Limnol Oceanogr Methods 6:454–465

    Article  Google Scholar 

  4. Kemp WM, Boynton WR (1980) Influence of biological and physical processes on dissolved oxygen dynamics in an estuarine system: implications for measurement of community metabolism. Estur Coast Mar Sci 11:407–431

    Article  Google Scholar 

  5. McCutchan JH, Lewis WM, Saunders JF (1998) Uncertainty in the estimation of stream metabolism from open-channel oxygen concentrations. J N Am Benthol Soc 17:155–164

    Article  Google Scholar 

  6. Staehr PA, Bade D, Van de Bogert MC, Koch GR, Williamson C, Hanson P, Cole JJ, Kratz T (2010) Lake metabolism and the diel oxygen technique: state of the science. Limnol Oceanogr Methods 8:628–644

    Article  CAS  Google Scholar 

  7. Staehr PA, Testa JM, Kemp WM, Cole JJ, Sand-Jensen K, Smith SV (2011) The metabolism of aquatic ecosystems: history, applications, and future challenges. Aquat Sci 74:15–29. doi:10.1007/s00027-011-0199-2

    Article  Google Scholar 

  8. Chapin TP, Caffrey JM, Jannasch HW, Coletti LJ, Haskins JC, Johnson KS (2004) Nitrate sources and sinks in Elkhorn Slough, California: results from long-term continuous in situ nitrate analyzers. Estuaries 27(5):882–894

    Article  CAS  Google Scholar 

  9. Johnson KS (2010) Simultaneous measurements of nitrate, oxygen, and carbon dioxide on oceanogrpahic moorings: observing the Redfield ratio in real time. Limnol Oceanogr 55(2):615–627

    Article  CAS  Google Scholar 

  10. Johnson KS, Needoba JA, Riser SC, Showers WJ (2007) Chemical sensor networks for the aquatic environment. Chem Rev 107:623–640

    Article  PubMed  CAS  Google Scholar 

  11. Van de Bogert MC, Carpenter SR, Cole JJ, Pace ML (2007) Assessing pelagic benthic metabolism using free water measurements. Limnol Oceanogr Methods 5:145–155

    Article  Google Scholar 

  12. Jannasch HW, Coletti LJ, Johnson KS, Fitzwater SE, Needoba JA, Plant JN (2008) The Land/Ocean Biogeochemical Observatory: a robust networked mooring system for continuously monitoring complex biogeochemical cycles in estuaries. Limnol Oceanogr Methods 6:263–276

    Article  CAS  Google Scholar 

  13. Martz TR, Johnson KS, Riser SC (2008) Ocean metabolism observed with oxygen sensors on profiling floats in the Pacific. Limnol Oceanogr 53:2094–2111

    Article  CAS  Google Scholar 

  14. Riser S, Johnson KS (2008) Net production of oxygen in the subtropical ocean. Nature 451:323–325

    Article  PubMed  CAS  Google Scholar 

  15. Johnson KS, Needoba JA (2008) Mapping the spatial variability of plankton metabolism using nitrate and oxygen sensors on an autonomous underwater vehicle. Limnol Oceanogr 53(5):2237–2250

    Article  CAS  Google Scholar 

  16. Nicholson D, Emerson S, Eriksen C (2008) Net community production in the deep euphotic zone of the subtropical North Pacific gyre from glider surveys. Limnol Oceanogr 53:2226–2236

    Article  CAS  Google Scholar 

  17. Longhurst AR (2007) Ecological geography of the sea, 2nd edn. Elsevier, New York, NY, 560 p

    Google Scholar 

  18. Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–219

    Google Scholar 

  19. Steemann-Nielsen E (1952) The use of radio-active carbon (C14) for measuring organic production in the sea. J Cons Int Explor Mer 18:117–140

    Google Scholar 

  20. Bender M, Grande K, Johnson K, Marra J, Williams PJL, Sieburth J, Pilson M, Langdon C, Hitchcock G, Orchardo J, Hunt C, Donaghay P (1987) A comparison of four methods for determining planktonic community production. Limnol Oceanogr 32:1085–1098

    Article  Google Scholar 

  21. Chen CC, Petersen JE, Kemp WM (2000) Nutrient uptake in experimental estuarine ecosystems: scaling and partitioning rates. Mar Ecol Prog Ser 200:103–116

    Article  CAS  Google Scholar 

  22. Pratt DM, Berkson H (1959) Two sources of error in the oxygen light and dark bottle method. Limnol Oceanogr 4(3):328–334

    Article  Google Scholar 

  23. Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 1:102–117

    Article  Google Scholar 

  24. Odum HT, Wilson RF (1962) Further studies on reaeration and metabolism of Texas Bays, 1958–1960. Publication of the Institute of Marine Science, Texas, pp 23–55

    Google Scholar 

  25. Hanson PC, Blade DL, Carpenter SR, Kratz TK, (2003) Lake metabolism: relationships with dissolved organic carbon and phosphorus. Limnol Oceanogr 48:1112–1119

    Article  CAS  Google Scholar 

  26. Martini M, Butman B, Michelson MJ (2007) Long-term performance of Aanderaa optodes and Sea-Bird SBE-43 dissolved-oxygen sensors bottom mounted at 32 m in Massachusetts Bay. J Atmos Oceanic Technol 24:1924–1935

    Article  Google Scholar 

  27. Tengberg A, Hovdenes J, Andersson HJ, Brocandel O, Diaz R, Hebert D, Arnerich T, Huber C, Körtzinger A, Khripounoff A, Rey F, Rönning C, Schimanski J, Sommer S, Stangelmayer A (2006) Evaluation of a lifetime-based optode to measure oxygen in aquatic systems. Limnol Oceanogr Methods 4:7–17

    Article  CAS  Google Scholar 

  28. Staehr PA, Sand-Jensen K (2007) Temporal dynamics and regulation of lake metabolism. Limnol Oceanogr 52:108–120

    Article  CAS  Google Scholar 

  29. Caffrey JM (2004) Factors controlling net ecosystem metabolism in U.S. estuaries. Estuaries 27(1):90–101

    Article  CAS  Google Scholar 

  30. D’Avanzo C, Kremer JN, Wainright SC (1996) Ecosystem production and respiration in response to eutrophication in shallow temperate estuaries. Mar Ecol Prog Ser 141:263–274

    Article  Google Scholar 

  31. Russell MJ, Montagna PA, Kalke RD (2006) The effect of freshwater inflow on net ecosystem metabolism in Lavaca Bay, Texas. Estuar Coast Shelf Sci 68:231–244

    Article  Google Scholar 

  32. del Giorgio PA, Cole JJ, Cimbleris A (1997) Respiration rates in bacteria exceed phytoplankton in unproductive aquatic systems. Nature 385:148–151

    Article  Google Scholar 

  33. Duarte CM, Agusti S (1998) The CO2 balance of unproductive aquatic ecosystems. Science 281:234–236

    Google Scholar 

  34. Williams PJL (1998) The balance of plankton respiration and photosynthesis in the open oceans. Nature 394:55–57

    Article  CAS  Google Scholar 

  35. Geider RJ (1997) Photosynthesis or planktonic respiration? Nature 388:132

    Article  CAS  Google Scholar 

  36. Karl DM, Laws EA, Morris P, Williams PJL, Emerson S (2003) Metabolic balance in the open sea. Nature 426:32

    Article  PubMed  CAS  Google Scholar 

  37. Chu CR, Jirka GH (2003) Wind and stream flow induced reaeration. J Environ Eng 129(12):1129–1136

    Article  CAS  Google Scholar 

  38. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97(C5):7373–7382

    Article  Google Scholar 

  39. Pace ML, Prairie YT (2005) Respiration in lakes. In: del Giorgio PA, Williams PJB (eds) Respiration in aquatic ecosystems. Oxford University Press, New York, NY, pp 103–121

    Chapter  Google Scholar 

  40. Tobias CR, Bolke JK, Harvey JW (2007) The oxygen-18 isotope approach for measuring aquatic metabolism in high-productivity waters. Limnol Oceanogr 52:1439–1453

    Article  CAS  Google Scholar 

  41. Falkowski PG, Raven JA (2007) Aquatic photosynthesis. Princeton University Press, Princeton, NJ, 484 p

    Google Scholar 

  42. Martz TR, Connery JG, Johnson KS (2010) Testing the Honeywell Durafet for seawater pH applications. Limnol Oceanogr Methods 8:172–184

    Article  CAS  Google Scholar 

  43. Cullison Gray SE, DeGrandpre MD, Moore TS, Martz TR, Friederich GE, Johnson KS (2011) Applications of in situ pH measurements for inorganic carbon calculations. Mar Chem 125(1–4):82–90

    Article  CAS  Google Scholar 

  44. Johnson KS, Coletti LJ (2002) In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide and bisulfide in the ocean. Deep-Sea Res Pt I 49:1291–1305

    Article  CAS  Google Scholar 

  45. Plant JN, Johnson KS, Needoba JA, Coletti LJ (2009) NH4-Digiscan: an in situ and laboratory ammonium analyzer for estuarine, coastal, and shelf waters. Limnol Oceanogr Methods 7:144–156

    Article  CAS  Google Scholar 

  46. Nyquist H (1932) Regeneration theory. Bell Syst Tech J 11:126–147

    Google Scholar 

  47. Johnson KS, Coletti LJ, Chanvez FP (2006) Diel nitrate cycles observed with in situ sensors predict monthly and annual new production. Deep-Sea Res Pt I 53:561–573

    Article  CAS  Google Scholar 

  48. Wainwright SC, Kremer JN, D’Avanzo C (1995) Evaluation of ENDECO 1184 C dissolved oxygen recorders for use in temperate estuaries. Water Res 29:2035–2042

    Article  Google Scholar 

  49. Iqbal M (1983) An introduction to solar radiation. Academic Press, New York, NY, 390 pp

    Google Scholar 

  50. Garcia HE, Gordon LI (1992) Oxygen solubility in seawater: better fitting equations. Limnol Oceanogr 37(6):1307–1312

    Article  CAS  Google Scholar 

  51. Benson BB, Krause JD (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol Oceanogr 29(3):620–632

    Article  CAS  Google Scholar 

  52. Holley ER (1977) Oxygen transfer at the air-water interface. In: Gibbs RJ, Shaw RP (eds) Transport processes in lakes and oceans. Plenum Press, New York, NY, pp 117–150

    Chapter  Google Scholar 

  53. Jahne B, Haubecker H (1998) Air-water gas exchange. Annu Rev Fluid Mech 30:443–468

    Article  Google Scholar 

  54. Jahne B, Munnich KO, Bosinger R, Dutzi A, Huber W, Libner P (1987) On the parameters influencing air-water gas exchange. J Geophys Res 92:1937–1949

    Article  Google Scholar 

  55. Crusius J, Wanninkhof R (2003) Gas transfer velocities measured at low wind speed over a lake. Limnol Oceanogr 48:1010–1017

    Article  Google Scholar 

  56. O’Connor DJ, Dobbins WE (1958) Mechanisms of reaeration in natural streams. Trans Am Soc Civ Eng 123:641–684

    Google Scholar 

  57. Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J 1:264–270

    Article  CAS  Google Scholar 

  58. Vanderborght JP, Wollast R, Loijens M, Regnier P (2002) Application of a transport-reaction model to the estimation of biogas fluxes in the Scheldt Estuary. Biogeochemistry 59:207–237

    Article  CAS  Google Scholar 

  59. Press WH, Teukolsky SA, Vetterling WT, Flannery BP, (1986) Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge, 848 p

    Google Scholar 

  60. Uchida H, Kawano T, Kaneko I, Fukasawa M (2008) In-situ calibration of optode-based oxygen sensors. J Atmos Oceanic Technol 25:2271–2281

    Article  Google Scholar 

  61. Hartman B, Hammond DE (1985) Gas exchange in San Francisco Bay. Hydrobiologia 129(1):59–68

    Article  CAS  Google Scholar 

  62. Smith SV (1985) Physical, chemical and biological characteristics of CO2 gas flux across the air-water interface. Plant Cell Environ 8:387–398

    Article  CAS  Google Scholar 

  63. Liu WT, Katsaros KB, Businger JA (1979) Bulk parameterization of air-sea exchange in heat and water vapor including the molecular ­constraints at the interface. J Atmos Sci 36:1722–1735

    Article  Google Scholar 

  64. Borges AV, Delille B, Schiettecatte L, Gazeau F, Abril G, Frankignoulle M (2004) Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnol Oceanogr 49(5):1630–1641

    Article  CAS  Google Scholar 

  65. Raymond PA, Cole JJ (2001) Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24(2):312–317

    Article  CAS  Google Scholar 

  66. Moore TS, Nuzzio DB, Di Toro DM, Luther GW III (2009) Oxygen dynamics in a well mixed estuary, the lower Delaware Bay, USA. Mar Chem 117:11–20

    Article  CAS  Google Scholar 

  67. Zappa CJ, Raymond PA, Terray EA, McGillis WR (2003) Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary. Estuar Coast 26(6):1401–1415

    Article  CAS  Google Scholar 

  68. Zappa CJ, McGillis WR, Raymond PA, Edson JB, Hintsa EJ, Zemmelink HJ, Dacey JWH, Ho DT (2007) Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophys Res Lett 34(L10601)

    Google Scholar 

  69. Abril G, Commarieu M, Sottolichio A, Bretel P, Guérin F (2009) Turbidity limits gas exchange in a large macrotidal estuary. Estuar Coast Shelf Sci 83(3):342–348

    Article  CAS  Google Scholar 

  70. Wesslander K, Hall P, Hjalmarsson S, Lefevre D, Omstedt A, Rutgersson A, Sahlée E, Tengberg A (2011) Observed carbon dioxide and oxygen dynamics in a Baltic Sea coastal region. J Mar Syst 86(1–2):1–9

    Article  Google Scholar 

  71. Heffernan JB, Cohen MJ (2010) Direct and indirect coupling of primary production and diel nitrate dynamics in a subtropical spring-fed river. Limnol Oceanogr 55(2):677–688

    Article  CAS  Google Scholar 

  72. Gilbert ML (2011) Nutrient loading and transformations in the Columbia River Estuary determined by high resolution in situ sensors. M.S. thesis, Division of Environmental & Biomolecular Systems, Oregon Health & Science University 166 p.

    Google Scholar 

  73. DeGrandpre MD, Hammar TR, Smith SP, Sayles FL (1995) In situ measurements of seawater pCO2. Limnol Oceanogr 40(5):969–975

    Article  CAS  Google Scholar 

  74. Friederich GE, Brewer PG, Herlien R, Chavez FP (1995) Measurements of sea surface partial pressure of CO2 from a moored buoy. Deep-Sea Res Pt I 42(1175–1186)

    Google Scholar 

  75. Anderson LA (1995) On the hydrogen and oxgyen content of marine phytoplankton. Deep-Sea Res Pt II 42(9):1675–1680

    CAS  Google Scholar 

  76. Emerson S, Stump C, Johnson B, Marl DM (2002) In situ determination of oxygen and nitrogen dynamics in the upper ocean. Deep-Sea Res Pt I 49:941–952

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Needoba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Needoba, J.A., Peterson, T.D., Johnson, K.S. (2012). Method for the Quantification of Aquatic Primary Production and Net Ecosystem Metabolism Using In Situ Dissolved Oxygen Sensors. In: Tiquia-Arashiro, S. (eds) Molecular Biological Technologies for Ocean Sensing. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-915-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-915-0_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-914-3

  • Online ISBN: 978-1-61779-915-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics