Skip to main content

Bioluminescence Detection for ATP Quantification Using Microfluidic Device

  • Protocol
  • First Online:
Molecular Biological Technologies for Ocean Sensing

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 719 Accesses

Abstract

An IISA-ATP (integrated in situ analyzer for ATP) was developed for the quantitative determination of ATP (adenosine-5′-triphosphate) in ocean environments, including the deep-sea. Total (intracellular and dissolved) ATP was quantitatively determined using a simple luciferin-luciferase (L-L) bioluminescence assay. A microfluidic device was incorporated as a core functional element in the IISA-ATP for performing cell lysis and carrying out the L-L reaction. The IISA-ATP has the capability to process environmental samples in the laboratory and in situ. Here, we provide an overview of the performance of the microfluidic device and the IISA-ATP on the basis of results of an in situ trial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karl DM (1980) Cellular nucleotide measurements and applications in microbial ecology. Microbiol Rev 44(4):739–796

    PubMed  CAS  Google Scholar 

  2. Karl DM, Wirsen CO, Jannasch HW (1980) Deep-sea primary production at the Galapagos hydrothermal vents. Science 207:1345–1347

    CAS  Google Scholar 

  3. Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PWJJ, Bolhuis H, Yakimov MM, D’Auria G, Giuliano L, Marty D, Tamburini C, McGenity TJ, Hallsworth JE, Sass AM, Timmis KN, Tselepides A, de Lange GJ, Hübner A, Thomson J, Varnavas SP, Gasparoni F, Gerber HW, Malinverno E, Corselli C (2006) Biodeep Scientific Party, Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature 440(7081):203–207

    Article  PubMed  CAS  Google Scholar 

  4. Azam F, Hodson RE (1977) Dissolved ATP in the sea and its utilisation by marine bacteria. Nature 267(5613):696–698

    Article  PubMed  CAS  Google Scholar 

  5. Hodson RE, Maccubbin AE, Pomeroy LR (1981) Dissolved adenosine triphosphate utilization by free-living and attached bacterioplankton. Mar Biol 64(1):43–51

    Article  CAS  Google Scholar 

  6. Björkman KM, Karl DM (2001) A novel method for the measurement of dissolved adenosine and guanosine triphosphate in aquatic habitats: applications to marine microbial ecology. J Microbiol Methods 47(2):159–167

    Article  PubMed  Google Scholar 

  7. Bautista DA, McIntyre L, Laleye L, Griffiths MW (1992) The application of ATP bioluminescence for the assesment of milk quality and factory hygiene. J Rapid Methods Autom Microbiol 1(3):179–193

    Article  Google Scholar 

  8. Hawronskyj J-M, Holah J (1997) ATP: A universal hygiene monitor. Trends Food Sci Technol 8(3):79–84

    Article  CAS  Google Scholar 

  9. Venkateswaran K, Hattori N, La Duc MT, Kern R (2003) ATP as a biomarker of viable microorganisms in clean-room facilities. J Microbiol Methods 52(3):367–377

    Article  PubMed  CAS  Google Scholar 

  10. Aycicek H, Oguz U, Karci K (2006) Comparison of results of ATP bioluminescence and traditional hygiene swabbing methods for the determination of surface cleanliness at a hospital kitchen. Int J Hyg Environ Health 209(2):203–206

    Article  PubMed  CAS  Google Scholar 

  11. Aoki Y, Fukuba T, Yamamoto T, Fujii T (2009) Design optimization and evaluation of a bioluminescence detection part on a microfluidic device for in situ ATP quantification. IEEJ Trans SM 129(3):73–76

    Article  Google Scholar 

  12. Denburg JL, McElroy WD (1970) Anion inhibition of firefly luciferase. Arch Biochem Biophys 141(2):668–675

    Article  PubMed  CAS  Google Scholar 

  13. Fujii T (2002) PDMS-based microfluidic devices for biomedical applications. Microelec Eng 61–62:907–914

    Article  Google Scholar 

  14. Fukuba T, Yamamoto T, Naganuma T, Fujii T (2004) Microfabricated flow-through device for DNA amplification—towards in situ gene analysis. Chem Eng J 101(1–3):151–156

    Article  CAS  Google Scholar 

  15. Fukuba T, Aoki Y, Fukuzawa N, Yamamoto T, Fujii T (2011) Microfluidic in situ analyzer for ATP quantification in ocean environments. Lab Chip 11:3508–3515

    Article  PubMed  CAS  Google Scholar 

  16. Hirayama H, Sunamura M, Takai K, Nunoura T, Noguchi T, Oida H, Furushima Y, Yamamoto H, Oomori T, Horikoshi K (2007) Culture-dependent and -independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island. Jpn Appl Environ Microbiol 73(23):7642–7656

    Article  CAS  Google Scholar 

  17. Fukuba T, Fukuzawa N, Glutz LS, Miyaji A, Fujii T (2007) Development of an integrated in situ analyzer for quantitative analysis of microbial ATP in aquatic environments. Underwater technology and workshop on ­scientific use of submarine cables and related technologies, Tokyo, Japan. p 210

    Google Scholar 

  18. Kinoshita H, Atsumi T, Fukuba T, Fujii T (2010) Active micro flow-rate regulation technique based on soft membrane deformation using miniaturized electroosmotic pumps. 14th international conference on miniaturized systems for chemistry and life sciences, Groningen, The Netherlands. pp 390–392

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. H. Yamamoto (Japan Agency for Marine-Earth and Technology: JAMSTEC) and Dr. Y. Furushima (JAMSTEC) for their assistance during the in situ trial of the IISA-ATP in Okinawa. This study was supported by a grant-in-aid by the Scientific Research (S) and Development of Fundamental Tools Program for underwater resource survey from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuhiro Fukuba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fukuba, T., Fujii, T. (2012). Bioluminescence Detection for ATP Quantification Using Microfluidic Device. In: Tiquia-Arashiro, S. (eds) Molecular Biological Technologies for Ocean Sensing. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-915-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-915-0_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-914-3

  • Online ISBN: 978-1-61779-915-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics