Skip to main content

Live-Cell Quantification of Mitochondrial Functional Parameters

  • Protocol
  • First Online:
Visualization Techniques

Part of the book series: Neuromethods ((NM,volume 70))

Abstract

Mitochondria are semi-autonomous organelles, which are central to cellular energy production and signal transduction. Given the tight integration between mitochondrial and cellular physiology, experimental strategies are required to study mitochondrial (dys)function in living cells. For this purpose one can use various chemical and protein-based fluorescent reporter molecules (probes), which are introduced into the cell using specific incubation protocols or transfection techniques. These probes include reporters to monitor mitochondrial membrane potential (Δψ), cytosolic and mitochondrial free calcium concentration (Ca2+), reactive oxygen species (ROS), cytosolic and mitochondrial pH, glucose and ATP. However, proper interpretation and quantification of the above readouts is not trivial. Here, we present our protocol for automated temporal analysis of mitochondrial position in living cells and explain how it can be used for computer-assisted quantification of mitochondrial morphology and Δψ. We further discuss how this approach can be applied for simultaneous quantification of multiple mitochondrial and cellular parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koopman WJ, Nijtmans LG, Dieteren CE, Roestenberg P, Valsecchi F, Smeitink JA, Willems PH (2010) Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal 12:1431–1470

    Article  PubMed  CAS  Google Scholar 

  2. Benard G, Rossignol R (2008) Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid Redox Signal 10:1313–1342

    Article  PubMed  CAS  Google Scholar 

  3. Smeitink J, van den Heuvel L, DiMauro S (2001) The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2:342–352

    Article  PubMed  CAS  Google Scholar 

  4. del Hoyo P, Garcia-Redondo A, de Bustos F, Molina JA, Sayed Y, Alonso-Navarro H, Caballero L, Arenas J, Agundez JA, Jimenez-Jimenez FJ (2010) Oxidative stress in skin fibroblasts cultures from patients with Parkinson’s disease. BMC Neurol 10:95

    Article  PubMed  Google Scholar 

  5. Campbell GR, Ziabreva I, Reeve AK, Krishnan KJ, Reynolds R, Howell O, Lassmann H, Turnbull DM, Mahad DJ (2010) Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol 69(3):481–92.

    Google Scholar 

  6. de Moura MB, dos Santos LS, Van Houten B (2010) Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Mol Mutagen 51:391–405

    PubMed  Google Scholar 

  7. Maximo V, Lima J, Soares P, Sobrinho-Simoes M (2009) Mitochondria and cancer. Virchows Arch 454:481–495

    Article  PubMed  CAS  Google Scholar 

  8. McFarland R, Taylor RW, Turnbull DM (2010) A neurological perspective on mitochondrial disease. Lancet Neurol 9:829–840

    Article  PubMed  CAS  Google Scholar 

  9. Moncada S (2010) Mitochondria as pharmacological targets. Br J Pharmacol 160:217–219

    Article  PubMed  CAS  Google Scholar 

  10. Wallace DC, Fan W, Procaccio V (2010) Mitochondrial energetics and therapeutics. Annu Rev Pathol 5:297–348

    Article  PubMed  CAS  Google Scholar 

  11. Zhang E, Zhang C, Su Y, Cheng T, Shi C (2010) Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy. Drug Discov Today 16:140–146

    Article  PubMed  Google Scholar 

  12. Distelmaier F, Visch H, Smeitink J, Mayatepek E, Koopman W, Willems P (2009) The antioxidant Trolox restores mitochondrial membrane potential and Ca2+-stimulated ATP production in human complex I deficiency. J Mol Med 87:515–522

    Article  PubMed  CAS  Google Scholar 

  13. Koopman WJ, Verkaart S, van Emst-de Vries SE, Grefte S, Smeitink JA, Willems PH (2006) Simultaneous quantification of oxidative stress and cell spreading using 5-(and-6)-chloromethyl-2′,7′-dichlorofluorescein. Cytometry A 69:1184–1192

    PubMed  Google Scholar 

  14. Condreay JP, Kost TA (2007) Baculovirus expression vectors for insect and mammalian cells. Curr Drug Targets 8:1126–1131

    Article  PubMed  CAS  Google Scholar 

  15. Ahmed BY, Chakravarthy S, Eggers R, Hermens WT, Zhang JY, Niclou SP, Levelt C, Sablitzky F, Anderson PN, Lieberman AR, Verhaagen J (2004) Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors. BMC Neurosci 5:4

    Article  PubMed  Google Scholar 

  16. Fleming J, Ginn SL, Weinberger RP, Trahair TN, Smythe JA, Alexander IE (2001) Adeno-associated virus and lentivirus vectors mediate efficient and sustained transduction of cultured mouse and human dorsal root ganglia sensory neurons. Hum Gene Ther 12:77–86

    Article  PubMed  CAS  Google Scholar 

  17. Distelmaier F, Koopman WJ, Testa ER, de Jong AS, Swarts HG, Mayatepek E, Smeitink JA, Willems PH (2008) Life cell quantification of mitochondrial membrane potential at the single organelle level. Cytometry A 73:129–138

    PubMed  Google Scholar 

  18. Kuznetsov AV, Hermann M, Saks V, Hengster P, Margreiter R (2009) The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol 41:1928–1939

    Article  PubMed  CAS  Google Scholar 

  19. Koopman WJ, Distelmaier F, Esseling JJ, Smeitink JA, Willems PH (2008) Computer-assisted live cell analysis of mitochondrial membrane potential, morphology and calcium handling. Methods 46:304–311

    Article  PubMed  CAS  Google Scholar 

  20. Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469–477

    Article  PubMed  CAS  Google Scholar 

  21. Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci USA 77:990–994

    Article  PubMed  CAS  Google Scholar 

  22. Johnson LV, Walsh ML, Bockus BJ, Chen LB (1981) Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol 88:526–535

    Article  PubMed  CAS  Google Scholar 

  23. Emaus RK, Grunwald R, Lemasters JJ (1986) Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850:436–448

    Article  PubMed  CAS  Google Scholar 

  24. Voronina SG, Barrow SL, Gerasimenko OV, Petersen OH, Tepikin AV (2004) Effects of secretagogues and bile acids on mitochondrial membrane potential of pancreatic acinar cells: comparison of different modes of evaluating DeltaPsim. J Biol Chem 279:27327–27338

    Article  PubMed  CAS  Google Scholar 

  25. Nicholls DG (2006) Simultaneous monitoring of ionophore- and inhibitor-mediated plasma and mitochondrial membrane potential changes in cultured neurons. J Biol Chem 281:14864–14874

    Article  PubMed  CAS  Google Scholar 

  26. Koopman WJ, Visch HJ, Smeitink JA, Willems PH (2005) Simultaneous quantitative measurement and automated analysis of mitochondrial morphology, mass, potential, and motility in living human skin fibroblasts. Cytometry A 69:1–12

    Google Scholar 

  27. Dieteren CE, Willems PH, Vogel RO, Swarts HG, Fransen J, Roepman R, Crienen G, Smeitink JA, Nijtmans LG, Koopman WJ (2008) Subunits of mitochondrial complex I exist as part of matrix- and membrane-associated subcomplexes in living cells. J Biol Chem 283:34753–34761

    Article  PubMed  CAS  Google Scholar 

  28. Willems PH, Smeitink JA, Koopman WJ (2009) Mitochondrial dynamics in human NADH: ubiquinone oxidoreductase deficiency. Int J Biochem Cell Biol 41:1773–1782

    Article  PubMed  CAS  Google Scholar 

  29. Visch HJ, Rutter GA, Koopman WJ, Koenderink JB, Verkaart S, de Groot T, Varadi A, Mitchell KJ, van den Heuvel LP, Smeitink JA, Willems PH (2004) Inhibition of mitochondrial Na+-Ca2+ exchange restores agonist-induced ATP production and Ca2+ handling in human complex I deficiency. J Biol Chem 279:40328–40336

    Article  PubMed  CAS  Google Scholar 

  30. Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD (2008) Chemical calcium indicators. Methods 46:143–151

    Article  PubMed  CAS  Google Scholar 

  31. Visch HJ, Koopman WJ, Zeegers D, van Emst-de Vries SE, van Kuppeveld FJ, van den Heuvel LW, Smeitink JA, Willems PH (2006) Ca2+-mobilizing agonists increase mitochondrial ATP production to accelerate cytosolic Ca2+ removal: aberrations in human complex I deficiency. Am J Physiol 291:C308–C316

    Article  CAS  Google Scholar 

  32. Forkink M, Smeitink JAM, Brock R, Willems PHGM, Koopman WJH (2010) Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells. Biochim Biophys Acta Bioenergetics 1797:1034–1044

    Article  CAS  Google Scholar 

  33. Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci USA 98:3197–3202

    Article  PubMed  CAS  Google Scholar 

  34. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  PubMed  CAS  Google Scholar 

  35. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3:281–286

    Article  PubMed  CAS  Google Scholar 

  36. Poburko D, Santo-Domingo J, Demaurex N (2011) Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. J Biol Chem 286(13):11672–11684

    Google Scholar 

  37. Imamura H, Nhat KP, Togawa H, Saito K, Iino R, Kato-Yamada Y, Nagai T, Noji H (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci USA 106:15651–15656

    Article  PubMed  CAS  Google Scholar 

  38. Berg J, Hung YP, Yellen G (2009) A genetically encoded fluorescent reporter of ATP:ADP ratio. Nat Methods 6:161–166

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an equipment grant of NWO (Netherlands Organization for Scientific Research, No: 911-02-008), the Dutch Ministry of Economic Affairs (Innovative Onderzoeks Projecten (IOP) Grant: #IGE05003), and by the CSBR (Centres for Systems Biology Research) initiative from NWO (No: CSBR09/013V).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner J. H. Koopman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nooteboom, M., Forkink, M., Willems, P.H.G.M., Koopman, W.J.H. (2012). Live-Cell Quantification of Mitochondrial Functional Parameters. In: Badoer, E. (eds) Visualization Techniques. Neuromethods, vol 70. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-897-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-897-9_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-896-2

  • Online ISBN: 978-1-61779-897-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics