Skip to main content

Analysis of Ubiquitinated Proteome by Quantitative Mass Spectrometry

  • Protocol
  • First Online:
Book cover Quantitative Methods in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 893))

Abstract

Protein modification by ubiquitin (Ub) is one of the most common posttranslational events in eukaryotic cells. Ubiquitinated proteins are destined to various fates such as proteasomal degradation, protein trafficking, DNA repair, and immune response. In the last decade, vast improvements of mass spectrometry make it feasible to analyze the minute amount of ubiquitinated components in vivo. When combined with quantitative strategies, such as stable isotope labeling with amino acids in cell culture (SILAC), it is capable of profiling ubiquitinated proteome under different experimental conditions. Here, we describe a procedure to perform such a study, including differential protein labeling by the SILAC method, enrichment of ubiquitinated species, mass spectrometric analysis, and quality control to reduce false positives. The potential challenges and limitations of the procedure are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Semple CA (2003) The comparative proteomics of ubiquitination in mouse. Genome Res 13:1389–1394

    Article  PubMed  CAS  Google Scholar 

  2. Schwartz AL, Ciechanover A (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 49:73–96

    Article  PubMed  CAS  Google Scholar 

  3. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    Article  PubMed  CAS  Google Scholar 

  4. Peng J, Schwartz D, Elias JE et al (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21:921–926

    Article  PubMed  CAS  Google Scholar 

  5. Iwai K, Tokunaga F (2009) Linear polyubiquitination: a new regulator of NF-kappaB activation. EMBO Rep 10:706–713

    Article  PubMed  CAS  Google Scholar 

  6. Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8:610–616

    Article  PubMed  CAS  Google Scholar 

  7. Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205

    Article  PubMed  CAS  Google Scholar 

  8. Xu P, Duong DM, Seyfried NT et al (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133–145

    Article  PubMed  CAS  Google Scholar 

  9. Jin L, Williamson A, Banerjee S et al (2008) Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133:653–665

    Article  PubMed  CAS  Google Scholar 

  10. Bhoj VG, Chen ZJ (2009) Ubiquitylation in innate and adaptive immunity. Nature 458:430–437

    Article  PubMed  CAS  Google Scholar 

  11. Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458:422–429

    Article  PubMed  CAS  Google Scholar 

  12. Darwin KH (2009) Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis. Nat Rev Microbiol 7:485–491

    Article  PubMed  CAS  Google Scholar 

  13. Kirkpatrick DS, Denison C, Gygi SP (2005) Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nat Cell Biol 7:750–757

    Article  PubMed  CAS  Google Scholar 

  14. Xu P, Peng J (2006) Dissecting the ubiquitin pathway by mass spectrometry. Biochim Biophys Acta 1764:1940–1947

    Article  PubMed  CAS  Google Scholar 

  15. Wang X, Guerrero C, Kaiser P et al (2007) Proteomics of proteasome complexes and ubiquitinated proteins. Expert Rev Proteomics 4:649–665

    Article  PubMed  CAS  Google Scholar 

  16. Cravatt BF, Simon GM, Yates JR III (2007) The biological impact of mass-spectrometry-based proteomics. Nature 450:991–1000

    Article  PubMed  CAS  Google Scholar 

  17. Gstaiger M, Aebersold R (2009) Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet 10:617–627

    Article  PubMed  CAS  Google Scholar 

  18. Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11:427–439

    Article  PubMed  CAS  Google Scholar 

  19. Peng J (2008) Evaluation of proteomic strategies for analyzing ubiquitinated proteins. BMB Rep 41:177–183

    Article  PubMed  CAS  Google Scholar 

  20. Peng J, Cheng D (2005) Proteomic analysis of ubiquitin conjugates in yeast. Methods Enzymol 399:367–381

    Article  PubMed  CAS  Google Scholar 

  21. Tagwerker C, Flick K, Cui M et al (2006) A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivo cross-linking. Mol Cell Proteomics 5:737–748

    PubMed  CAS  Google Scholar 

  22. Meierhofer D, Wang X, Huang L et al (2008) Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res 7:4566–4576

    Article  PubMed  CAS  Google Scholar 

  23. Matsumoto M, Hatakeyama S, Oyamada K et al (2005) Large-scale analysis of the human ubiquitin-related proteome. Proteomics 5:4145–4151

    Article  PubMed  CAS  Google Scholar 

  24. Vasilescu J, Smith JC, Ethier M et al (2005) Proteomic analysis of ubiquitinated proteins from human MCF-7 breast cancer cells by immunoaffinity purification and mass spectrometry. J Proteome Res 4:2192–2200

    Article  PubMed  CAS  Google Scholar 

  25. Newton K, Matsumoto ML, Wertz IE et al (2008) Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134:668–678

    Article  PubMed  CAS  Google Scholar 

  26. Layfield R, Tooth D, Landon M et al (2001) Purification of poly-ubiquitinated proteins by S5a-affinity chromatography. Proteomics 1:773–777

    Article  PubMed  CAS  Google Scholar 

  27. Weekes J, Morrison K, Mullen A et al (2003) Hyperubiquitination of proteins in dilated cardiomyopathy. Proteomics 3:208–216

    Article  PubMed  CAS  Google Scholar 

  28. Maor R, Jones A, Nuhse TS et al (2007) Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Mol Cell Proteomics 6:601–610

    Article  PubMed  CAS  Google Scholar 

  29. Bennett EJ, Shaler TA, Woodman B et al (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448:704–708

    Article  PubMed  CAS  Google Scholar 

  30. Hjerpe R, Aillet F, Lopitz-Otsoa F et al (2009) Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep 10:1250–1258

    Article  PubMed  CAS  Google Scholar 

  31. Peng J, Gygi SP (2001) Proteomics: the move to mixtures. J Mass Spectrom 36:1083–1091

    Article  PubMed  CAS  Google Scholar 

  32. Marotti LA Jr, Newitt R, Wang Y et al (2002) Direct identification of a G protein ubiquitination site by mass spectrometry. Biochemistry 41:5067–5074

    Article  PubMed  CAS  Google Scholar 

  33. Seyfried NT, Xu P, Duong DM et al (2008) Systematic approach for validating the ubiquitinated proteome. Anal Chem 80:4161–4169

    Article  PubMed  CAS  Google Scholar 

  34. Mayor T, Graumann J, Bryan J et al (2007) Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol Cell Proteomics 6:1885–1895

    Article  PubMed  CAS  Google Scholar 

  35. Xu P, Duong DM, Peng J (2009) Systematical optimization of reverse-phase chromatography for shotgun proteomics. J Proteome Res 8:3944–3950

    Article  PubMed  CAS  Google Scholar 

  36. Eng J, McCormack AL, Yates JR 3rd (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  37. Peng J, Elias JE, Thoreen CC et al (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2:43–50

    Article  PubMed  CAS  Google Scholar 

  38. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214

    Article  PubMed  CAS  Google Scholar 

  39. Seyfried NT, Gozal YM, Dammer EB et al (2010) Multiplex SILAC analysis of a cellular TDP-43 proteinopathy model reveals protein inclusions associated with SUMOylation and diverse polyubiquitin chains. Mol Cell Proteomics 9:705–718

    Article  PubMed  CAS  Google Scholar 

  40. Shevchenko A, Wilm M, Vorm O et al (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  41. de Godoy LM, Olsen JV, Cox J et al (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455:1251–1254

    Article  PubMed  Google Scholar 

  42. Sury MD, Chen JX, Selbach M (2010) The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9(10):2173–2178

    Article  PubMed  CAS  Google Scholar 

  43. Kruger M, Moser M, Ussar S et al (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364

    Article  PubMed  Google Scholar 

  44. Nielsen ML, Vermeulen M, Bonaldi T et al (2008) Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat Methods 5:459–460

    Article  PubMed  CAS  Google Scholar 

  45. Xu P, Cheng D, Duong DM et al (2006) A proteomic strategy for quantifying polyubiquitin chain topologies. Israel J Chem 46:171–182

    Article  CAS  Google Scholar 

  46. Golebiowski F, Matic I, Tatham MH et al (2009) System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2:ra24

    Google Scholar 

  47. Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 28:868–873

    Article  PubMed  CAS  Google Scholar 

  48. Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  PubMed  CAS  Google Scholar 

  49. Kirkpatrick DS, Hathaway NA, Hanna J et al (2006) Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat Cell Biol 8:700–710

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Institutes of Health grants (RR025822, and NS055077), and the American Cancer Society grant (RSG-09-181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmin Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Na, C.H., Peng, J. (2012). Analysis of Ubiquitinated Proteome by Quantitative Mass Spectrometry. In: Marcus, K. (eds) Quantitative Methods in Proteomics. Methods in Molecular Biology, vol 893. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-885-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-885-6_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-884-9

  • Online ISBN: 978-1-61779-885-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics