Skip to main content

KiC Assay: A Quantitative Mass Spectrometry-Based Approach

  • Protocol
  • First Online:
Quantitative Methods in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 893))

Abstract

Protein phosphorylation is one of the most important posttranslational modifications (PTMs) involved in the transduction of cellular signals. The number of kinases in eukaryotic genomes ranges from several hundred to over one thousand. And with rapidly evolving mass spectrometry (MS)-based approaches, thousands to tens of thousands of phosphorylation sites (phosphosites) have been reported from various eukaryotic organisms, from man to plants. In this relative context, few bona fide kinase–client relationships have been identified to date. To merge the gap between these phosphosites and the cognate kinases that beget these events, comparable large-scale methodologies are required. We describe in detail a MS-based method for identifying kinase–client interactions and quantifying kinase activity. We term this novel Kinase–Client assay, the KiC assay. The KiC assay relies upon the fact that substrate specificities of many kinases are largely determined by primary amino acid sequence or phosphorylation motifs, which consist of key amino acids surrounding the phosphorylation sites. The workflow for detecting kinase–substrate interactions includes four major steps: (1) preparation of purified kinases and synthetic peptide library, (2) in vitro kinase peptide library assay, (3) liquid chromatography (LC)-tandem MS (MS/MS) analysis, and (4) data processing and interpretation. Kinase activity is quantified with the KiC assay by monitoring spectral counts of phosphorylated and unphosphorylated peptides as the readout from LC-tandem mass spectrometry. The KiC assay can be applied as a discovery assay to screen kinases against a synthetic peptide library to find kinase–client relationships or as a targeted assay to characterize kinase kinetics.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-61779-885-6_32

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ptacek J, Devgan G, Michaud G et al (2005) Global analysis of protein phosphorylation in yeast. Nature 438:679–684

    Article  PubMed  CAS  Google Scholar 

  2. Schutkowski M, Reineke U, Reimer U (2005) Peptide arrays for kinase profiling. Chem Bio Chem 6:513–521

    PubMed  CAS  Google Scholar 

  3. Harmon AC, Curran AC, Harper JF (2008) Use of directed peptide libraries for discovery of substrates of Arabidopsis CDPKs. FASEB J 22:1050.9

    Google Scholar 

  4. Dephoure N, Howson RW, Blethrow JD et al (2005) Combining chemical genetics and proteomics to identify protein kinase substrates. Proc Natl Acad Sci USA 102:17940–17945

    Article  PubMed  CAS  Google Scholar 

  5. Ubersax JA, Woodbury EL, Quang PN et al (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425:859–864

    Article  PubMed  CAS  Google Scholar 

  6. Zhang H, Zha X, Tan Y et al (2002) Phosphoprotein analysis using antibodies broadly reactive against phosphorylated motifs. J Biol Chem 277:39379–39387

    Article  PubMed  CAS  Google Scholar 

  7. Ulintz PJ, Yocum AK, Bodenmiller B et al (2009) Comparison of MS(2)-only, MSA, and MS(2)/MS(3) methodologies for phosphopeptide identification. J Proteome Res 8:887–899

    Article  PubMed  CAS  Google Scholar 

  8. Wiesner J, Premsler T, Sickmann A (2008) Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications. Proteomics 8:4466–4483

    Article  PubMed  CAS  Google Scholar 

  9. Agrawal GK, Thelen JJ (2006) Large scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape. Mol Cell Proteomics 5:2044–2059

    Article  PubMed  CAS  Google Scholar 

  10. Olsen JV, Vermeulen M, Santamaria A et al (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3:ra3

    Article  PubMed  Google Scholar 

  11. Reiland S, Messerli G, Baerenfaller K et al (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150:889–903

    Article  PubMed  CAS  Google Scholar 

  12. Min DH, Su J, Mrksich M (2004) Profiling kinase activities by using a peptide chip and mass spectrometry. Angew Chem Int Ed Engl 43:5973–5977

    Article  PubMed  CAS  Google Scholar 

  13. Gao H, Leary JA (2003) Multiplex inhibitor screening and kinetic constant determinations for yeast hexokinase using mass spectrometry based assays. J Am Soc Mass Spectrom 14:173–181

    Article  PubMed  CAS  Google Scholar 

  14. Zhang L, Yan Y, Liu Z et al (2009) Identification of peptide substrate and small molecule inhibitors of testis-specific serine/threonine kinase1 (TSSK1) by the developed assays. J Med Chem 52:4419–4428

    Article  PubMed  CAS  Google Scholar 

  15. Huang Y, Houston NL, Tovar-Méndez A et al (2010) A quantitative mass spectrometry-based approach for identifying protein kinase clients and quantifying kinase activity. Anal Biochem 402:69–76

    Article  PubMed  CAS  Google Scholar 

  16. Thelen JJ, Miernyk JA, Randall DD (2000) Pyruvate dehydrogenase kinase from Arabidopsis thaliana: a protein histidine kinase that phosphorylates serine residues. Biochem J 349:195–201

    Article  PubMed  CAS  Google Scholar 

  17. Vlad F, Turk BE, Peynot P et al (2008) A versatile strategy to define the phosphorylation preferences of plant protein kinases and screen for putative substrates. Plant J 55:104–117

    Article  PubMed  CAS  Google Scholar 

  18. Xia Y, Makris C, Su B et al (2000) MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc Natl Acad Sci USA 97:5243–5248

    Article  PubMed  CAS  Google Scholar 

  19. Popescu SC, Popescu GV, Bachan S et al (2009) MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev 23:80–92

    Article  PubMed  CAS  Google Scholar 

  20. Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8:530–541

    Article  PubMed  CAS  Google Scholar 

  21. Linding R, Jensen LJ, Pasculescu A et al (2008) NetworKIN: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res 36:D695–699

    Article  PubMed  CAS  Google Scholar 

  22. Johnson SA, Hunter T (2005) Kinomics: methods for deciphering the kinome. Nat Methods 2:17–25

    Article  PubMed  CAS  Google Scholar 

  23. Sopko R, Andrews BJ (2008) Linking the kinome and phosphorylome – a comprehensive review of approaches to find kinase targets. Mol Biosyst 4:920–933

    Article  PubMed  CAS  Google Scholar 

  24. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214

    Article  PubMed  CAS  Google Scholar 

  25. Jürgen F, Xinping L, Thomas F (2005) Threshold values for detergents in protein and peptide samples for mass spectrometry. Rapid Commun Mass Spectrom 19:2986–2988

    Article  Google Scholar 

  26. Carr D (2002) The handbook of analysis and purification of peptides and proteins by reversed-phase HPLC. http://teachline.ls.huji.ac.il/72682/Booklets/VYDAChandbookRPC.pdf. Accessed 28 Jun 2010

  27. Schroeder MJ, Shabanowitz J, Schwartz JC et al (2004) A neutral loss activation method for improved phosphopeptide sequence ­analysis by quadrupole ion trap mass spectrometry. Anal Chem 76:3590–3598

    Article  PubMed  CAS  Google Scholar 

  28. Beausoleil SA, Villen J, Gerber SA et al (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24:1285–1292

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Jianjiong Gao (Digital Biology Lab, University of Missouri-Columbia) for writing the DecoyDBCreator script. Development of the method was funded by National Science Foundation (NSF) Plant Genome Research Program awards ­DBI-0332418 and DBI-0604439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay J. Thelen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Huang, Y., Thelen, J.J. (2012). KiC Assay: A Quantitative Mass Spectrometry-Based Approach. In: Marcus, K. (eds) Quantitative Methods in Proteomics. Methods in Molecular Biology, vol 893. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-885-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-885-6_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-884-9

  • Online ISBN: 978-1-61779-885-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics