Skip to main content

Important Issues in Planning a Proteomics Experiment: Statistical Considerations of Quantitative Proteomic Data

  • Protocol
  • First Online:
Quantitative Methods in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 893))

Abstract

Mass spectrometry is frequently used in quantitative proteomics to detect differentially regulated proteins. A very important but unfortunately oftentimes neglected part in detecting differential proteins is the statistical analysis. Data from proteomics experiments are usually high-dimensional and hence require profound statistical methods. It is especially important to already correctly design a proteomic experiment before it is conducted in the laboratory. Only this can ensure that the statistical analysis is capable of detecting truly differential proteins afterwards. This chapter thus covers aspects of both statistical planning and the actual analysis of quantitative proteomic experiments.

*These authors are co-corresponding authors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cravatt BF, Simon GM, Yates JR III (2007) The biological impact of mass-spectrometry-based proteomics. Nature 450:991–1000

    Article  PubMed  CAS  Google Scholar 

  2. Hanash SM, Pitteri SJ, Faca VM (2008) Mining the plasma proteome for cancer biomarkers. Nature 452:571–579

    Article  PubMed  CAS  Google Scholar 

  3. Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24:971–983

    Article  PubMed  CAS  Google Scholar 

  4. Hu J, Coombes KR, Morris JS et al (2005) The importance of experimental design in proteomic mass spectrometry experiments: some cautionary tales. Brief Funct Genomics Proteomics 3:322–331

    Article  CAS  Google Scholar 

  5. Chelius D, Bondarenko PV (2002) Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res 1:317–323

    Article  PubMed  CAS  Google Scholar 

  6. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    Article  PubMed  CAS  Google Scholar 

  7. Listgarten J, Emili A (2005) Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 4:419–434

    Article  PubMed  CAS  Google Scholar 

  8. Podwojski K, Eisenacher M, Kohl M et al (2010) Peek a peak: a glance at statistics for quantitative label-free proteomics. Expert Rev Proteomics 7:249–261

    Article  PubMed  CAS  Google Scholar 

  9. Mueller LN, Brusniak MY, Mani DR et al (2008) An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res 7:51–61

    Article  PubMed  CAS  Google Scholar 

  10. Radulovic D, Jelveh S, Ryu S et al (2004) Informatics platform for global proteomic profiling and biomarker discovery using liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 3:984–997

    Article  PubMed  CAS  Google Scholar 

  11. Bellew M, Coram M, Fitzgibbon M et al (2006) A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS. Bioinformatics 22:1902–1909

    Article  PubMed  CAS  Google Scholar 

  12. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  PubMed  CAS  Google Scholar 

  13. Eng JK, McCormack AL, Yates JR 3rd (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  14. Perkins DN, Pappin DJ, Creasy DM et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  15. Reidegeld KA, Eisenacher M, Kohl M et al (2008) An easy-to-use Decoy Database Builder software tool, implementing different decoy strategies for false discovery rate calculation in automated MS/MS protein identifications. Proteomics 8:1129–1137

    Article  PubMed  CAS  Google Scholar 

  16. Keller A, Nesvizhskii AI, Kolker E et al (2002) Empirical statistical model to estimate the ­accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392

    Article  PubMed  CAS  Google Scholar 

  17. Nesvizhskii AI, Keller A, Kolker E et al (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658

    Article  PubMed  CAS  Google Scholar 

  18. Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4:1419–1440

    Article  PubMed  CAS  Google Scholar 

  19. Liu H, Sadygov RG, Yates JR 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    Article  PubMed  CAS  Google Scholar 

  20. Old WM, Meyer-Arendt K, Aveline-Wolf L et al (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4:1487–1502

    Article  PubMed  CAS  Google Scholar 

  21. Cairns DA, Barrett JH, Billingham LJ et al (2009) Sample size determination in clinical proteomic profiling experiments using mass spectrometry for class comparison. Proteomics 9:74–86

    Article  PubMed  CAS  Google Scholar 

  22. Dudoit S, Shaffer JP, Boldrick JC (2003) Multiple hypothesis testing in microarray experiments. Stat Sci 18:71–103

    Article  Google Scholar 

  23. Dudoit S, Yang YH, Callow MJ et al (2002) Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat Sin 12: 111–139

    Google Scholar 

  24. Jung K, Poschmann G, Podwojski K et al (2009) Adjusted confidence intervals for the expression change of proteins observed in 2-dimensional difference gel electrophoresis. J Proteomics Bioinform 2:78–87

    Article  CAS  Google Scholar 

  25. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Stephan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Podwojski, K., Stephan, C., Eisenacher, M. (2012). Important Issues in Planning a Proteomics Experiment: Statistical Considerations of Quantitative Proteomic Data. In: Marcus, K. (eds) Quantitative Methods in Proteomics. Methods in Molecular Biology, vol 893. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-885-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-885-6_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-884-9

  • Online ISBN: 978-1-61779-885-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics