Skip to main content

Tobacco Rattle Virus (TRV)-Based Virus-Induced Gene Silencing

  • Protocol
  • First Online:
Antiviral Resistance in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 894))

Abstract

One of the most effective forms of plant defense against viruses is posttranscriptional gene silencing (PTGS). This process implies that a virus can trigger the host plant’s RNA-silencing machinery and ultimately become the target of RNA silencing. PTGS is, therefore, an attractive endogenous process that can be exploited to study gene function. One of the most efficient approaches of initiating PTGS is through virus-induced gene silencing (VIGS). When a recombinant viral vector (VIGS vector), carrying a host-derived target gene sequence, infects a plant, viral double-stranded RNAs are synthesized leading to the activation of the antiviral RNA silencing pathway and the subsequent knockdown of the endogenous host gene. VIGS is both a powerful reverse and forward genetics tool and is amendable to high-throughput genetic screens and functional genomics. Here, we describe the use of tobacco rattle virus-based VIGS techniques to study gene function in Nicotiana benthamiana, tomato, and Arabidopsis thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baulcombe D (1999) Viruses and gene silencing in plants. Arch Virol Suppl 15:189–201

    PubMed  Google Scholar 

  2. Waterhouse PM, Helliwell CA (2003) Exploring plant genomes by RNA-mediated gene silencing. Nat Rev Genet 4:29–38

    Article  PubMed  Google Scholar 

  3. Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411:834–842

    Article  PubMed  Google Scholar 

  4. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  PubMed  Google Scholar 

  5. Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39: 734–746

    Article  PubMed  Google Scholar 

  6. Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC (2003) Virus-induced gene silencing in plants. Methods 30:296–303

    Article  PubMed  Google Scholar 

  7. Robertson D (2004) VIGS vectors for gene silencing: many targets, many tools. Annu Rev Plant Biol 55:495–519

    Article  PubMed  Google Scholar 

  8. Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, Rathjen JP et al (2003) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 22:5690–5699

    Article  PubMed  Google Scholar 

  9. Kumagai MH, Donson J, Della-Cioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci 92:1679–1683

    Article  PubMed  Google Scholar 

  10. Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus induced gene silencing. Plant Cell 10:937–946

    PubMed  Google Scholar 

  11. Peele C, Jordan CV, Muangsan N, Turnage M, Egelkrout E, Eagle P et al (2001) Silencing of a meristematic gene using geminivirus-derived vectors. Plant J 27:357–366

    Article  PubMed  Google Scholar 

  12. Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245

    Article  PubMed  Google Scholar 

  13. Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30: 415–429

    Article  PubMed  Google Scholar 

  14. Zhang C, Ghabrial SA (2006) Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Virology 344:401–411

    Article  PubMed  Google Scholar 

  15. Pflieger S, Blanchet S, Camborde L, Drugeon G, Rousseau A, Noizet M et al (2008) Efficient virus-induced gene silencing in Arabidopsis using a ‘one-step’ TYMV-derived vector. Plant J 56:678–690

    Article  PubMed  Google Scholar 

  16. Igarashi A, Yamagata K, Sugai T, Takahashi Y, Sugawara E, Tamura A et al (2009) Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 386:407–416

    Article  PubMed  Google Scholar 

  17. Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, Dinesh-Kumar SP (2008) Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132:449–462

    Article  PubMed  Google Scholar 

  18. Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  PubMed  Google Scholar 

  19. Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J 36:905–917

    Article  PubMed  Google Scholar 

  20. Fu DQ, Zhu BZ, Zhu HL, Jiang WB, Luo YB (2005) Virus-induced gene silencing in tomato fruit. Plant J 43:299–308

    Article  PubMed  Google Scholar 

  21. Chung E, Seong E, Kim YC, Chung EJ, Oh SK, Lee S et al (2004) A method of high frequency virus-induced gene silencing in chili pepper. Mol Cell 17:377–380

    Google Scholar 

  22. Brigneti G, Martin-Hernandez AM, Jin H, Chen J, Baulcombe DC, Baker et al (2004) Virus-induced gene silencing in Solanum species. Plant J 39:264–272

    Article  PubMed  Google Scholar 

  23. Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP (2006) Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol 142: 21–27

    Article  PubMed  Google Scholar 

  24. Ding XS, Schneider WL, Chaluvadi SR, Mian MA, Nelson RS (2006) Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol Plant Microbe Interact 19:1229–1239

    Article  PubMed  Google Scholar 

  25. Szittya G, Silhavy D, Molnár A, Havelda Z, Lovas A, Lakatos L et al (2003) Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22:633–640

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank Meenu Padmanabhan for the editing and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savithramma P. Dinesh-Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bachan, S., Dinesh-Kumar, S.P. (2012). Tobacco Rattle Virus (TRV)-Based Virus-Induced Gene Silencing. In: Watson, J., Wang, MB. (eds) Antiviral Resistance in Plants. Methods in Molecular Biology, vol 894. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-882-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-882-5_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-881-8

  • Online ISBN: 978-1-61779-882-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics