Skip to main content

DNA Fingerprinting Intron-Sizing Method to Accomplish a Specific, Rapid, and Sensitive Identification of Carotenogenic Dunaliella Species

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 892))

Abstract

Dunaliella salina has become the most important microorganism for the production of β-carotene around the world. Natural carotenoids are a source of active metabolites utilized in different areas of food nutrition and pharmaceuticals, both in humans and also in animals. Identification of Dunaliella species from natural environments or certified culture collections is not precise and it is time consuming. However, accurate identification is extremely important because a slight difference in Dunaliella species generates great differences in carotenoids production. Here, we describe an intron-sizing method to make a rapid and precise identification for each of the most important carotenogenic species, showing that each hyperproducer species has an exclusive 18S rDNA fingerprint profile.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1:2

    Article  PubMed  Google Scholar 

  2. Borowitzka MA, Siva CJ (2007) The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J Appl Phycol 19: 567–590

    Article  Google Scholar 

  3. Ben-Amotz A, Asís A, Avron M (1991) The biotechnology of cultivating Dunaliella for production of β-carotene rich algae. Bioresour Technol 38:233–235

    Article  CAS  Google Scholar 

  4. Gómez PI, González MA (2004) Genetic variation among sever strains of Dunaliella salina (Chlorophyta) with industrial potencial, based on RAPD bandung patterns and on nuclear ITS rDNA sequences. Aquaculture 233:149–162

    Article  Google Scholar 

  5. Olmos SJ, Paniagua MJ, Contreras FR (2000) Molecular identification of Dunaliella sp. utilizing the 18S rDNA gene. Lett Appl Microbiol 30:80–84

    Article  PubMed  CAS  Google Scholar 

  6. García TA, Olmos SJ (2007) Quantification by fluorescent in situ hybridization of bacteria associated with Litopenaeus vannamei larvae in Mexican shrimp hatchery. Aquaculture 262:211–218

    Article  Google Scholar 

  7. Hernández ZG, Olmos SJ (2006) Identification of bacterial diversity in the oyster Crassostrea gigas by fluorescent in situ hybridization and polymerase chain reaction. J Appl Microbiol 100:664–672

    Article  Google Scholar 

  8. DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363

    Article  PubMed  CAS  Google Scholar 

  9. Ki SJ, Han MS (2005) Sequence-based diagnostics and phylogenetic approach of uncultured freshwater dinoglagellate Peridinium (Dinophyceae) species, based on single-cell sequencing of rDNA. J Appl Phycol 17:147–153

    Article  CAS  Google Scholar 

  10. Ki JS, Han MS (2007) Rapid molecular identification of the harmful freshwater dinoglagellate Peridinium in varios life stages using genus-specific single-cell PCR. J Appl Phycol 19:467–470

    Article  CAS  Google Scholar 

  11. Olmos SJ, Paniagua MJ, Contreras FR, Trujillo L (2002) Molecular identification of β-carotene hyper-producing strain of Dunaliella from saline environments using specie-specific oligonucleotides. Biotechnol Lett 24:365–369

    Article  Google Scholar 

  12. Olmos SJ, Ochoa SJL, Paniagua-Michel JJ, Contreras FR (2009) DNA fingerprinting differentiation between β-carotene hyperproducer strain of Dunaliella from around the world. Saline Syst 5:5

    Article  PubMed  Google Scholar 

  13. Guillard RRL, Sieracki MS (2005) Counting cells in cultures with the light microscope. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, p 239

    Google Scholar 

  14. Moore DD (1992) Reagent and solutions. Appendix 1. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Short protocols in molecular biology. Wiley, New York, pp A1–57

    Google Scholar 

  15. Guillard RRL (2005) Purification methods for microalgae. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, p 117

    Google Scholar 

  16. Harrison PJ, Berges JA (2005) Marine culture media. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, p 21

    Google Scholar 

  17. Andersen RA, Berges JA, Harrison PJ, Watanabe MM (2005) Recipes for freshwater and seawater media. Appendix A. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, p 507

    Google Scholar 

  18. Ben-Amotz A (2004) Industrial production of microalgal cell-mass and secondary products—major industrial species Dunaliella. In: Richmond A (ed) Handbook of microalgae culture: biotechnology and applied phycology. Blackwell Science Ltd, Oxford, UK, p 273

    Google Scholar 

  19. Andersen RA, Kawachi M (2005) Traditional microalgae isolation techniques. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, p 83

    Google Scholar 

  20. Moore DD (1992) Preparation and analysis of DNA. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Short protocols in molecular biology. Wiley, New York, pp 2–1

    Google Scholar 

  21. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, NY (vols. 1, 2, 3)

    Google Scholar 

  22. Innis MA, Gelfand DH (1990) Optimization of PCRs. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, p 3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Olmos-Soto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Olmos-Soto, J., Paniagua-Michel, J., Contreras, R., Ochoa, L. (2012). DNA Fingerprinting Intron-Sizing Method to Accomplish a Specific, Rapid, and Sensitive Identification of Carotenogenic Dunaliella Species. In: Barredo, JL. (eds) Microbial Carotenoids from Bacteria and Microalgae. Methods in Molecular Biology, vol 892. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-879-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-879-5_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-878-8

  • Online ISBN: 978-1-61779-879-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics