Skip to main content

Characterization of Poxvirus-Encoded Proteins that Regulate Innate Immune Signaling Pathways

  • Protocol
  • First Online:
Vaccinia Virus and Poxvirology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 890))

Abstract

Innate immune recognition of pathogens is critical to the prompt control of infections, permitting the host to survive to develop long-term immunity via an adaptive immune response. Poxviruses encode a family of proteins that inhibit signaling by Toll-like receptors to their downstream signaling components, severely limiting nuclear translocation of transcription factors such as IRF3 and NF-κB and thereby decreasing production of host interferons and cytokines. We describe bioinformatics techniques for identifying candidate poxviral inhibitors of the innate immune response based on similarity to the family of proteins that includes A52, A46, and N1. Robust luciferase assays can determine whether a given poxviral gene affects innate immune signaling, and in combination with other approaches can identify the cellular targets of poxviral innate immune evasion genes. Because apoptosis is an innate immune response of the cell to viral infection, assays for identifying poxviral genes that inhibit apoptosis can also be employed. Novel poxviral innate immune inhibitors are being identified via several approaches and these techniques promise to identify further complexities in the way that poxviruses interact with the host innate immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680

    Article  PubMed  CAS  Google Scholar 

  2. Akira S, Hoshino K, Kaisho T (2000) The role of Toll-like receptors and MyD88 in innate immune responses. J Endotoxin Res 6:383–387

    PubMed  CAS  Google Scholar 

  3. Fitzgerald K, Palsson-McDermott E, Bowie A, Jefferies C, Mansell A, Brady G, Brint E, Dunne A, Gray P, Harte M, McMurray D, Smith D, Sims J, Bird T, O’Neill L (2001) Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413:78

    Article  PubMed  CAS  Google Scholar 

  4. Horng T, Barton G, Medzhitov R (2001) (2001) TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol 2(9):835–41

    Article  PubMed  CAS  Google Scholar 

  5. Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T (2003) TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 4:161–167

    Article  PubMed  CAS  Google Scholar 

  6. Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, Akira S (2002) Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 169:6668–6672

    PubMed  CAS  Google Scholar 

  7. Bin L, Xu L, Shu H (2003) TIRP, a novel Toll/interleukin-1 receptor (TIR) domain-containing adapter protein involved in TIR signaling. J Biol Chem 278:24526–24532

    Article  PubMed  CAS  Google Scholar 

  8. Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, Monks B, Pitha PM, Golenbock DT (2003) LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med 198:1043–1055

    Article  PubMed  CAS  Google Scholar 

  9. Ruckdeschel K, Pfaffinger G, Haase R, Sing A, Weighardt H, Hacker G, Holzmann B, Heesemann J (2004) Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages. J Immunol 173:3320–3328

    PubMed  CAS  Google Scholar 

  10. Doyle S, Vaidya S, O’Connell R, Dadgostar H, Dempsey P, Wu T, Rao G, Sun R, Haberland M, Modlin R, Cheng G (2002) IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17:251–263

    Article  PubMed  CAS  Google Scholar 

  11. McWhirter S, Fitzgerald K, Rosains J, Rowe D, Golenbock D, Maniatis T (2004) IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci USA 101:233–238

    Article  PubMed  CAS  Google Scholar 

  12. Fitzgerald K, McWhirter S, Faia K, Rowe D, Latz E, Golenbock D, Coyle A, Liao S, Maniatis T (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4:491–496

    Article  PubMed  CAS  Google Scholar 

  13. Alcami A, Symons J, Smith G (2000) The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN. J Virol 74:11230–11239

    Article  PubMed  CAS  Google Scholar 

  14. Langland J, Jacobs B (2002) The role of the PKR-inhibitory genes, E3L and K3L, in determining vaccinia virus host range. Virology 299:133–141

    Article  PubMed  CAS  Google Scholar 

  15. Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim S, Goode J, Lin P, Mann N, Mudd S, Crozat K, Sovath S, Han J, Beutler B (2003) Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424:743–748

    Article  PubMed  CAS  Google Scholar 

  16. Altmann M, Hammerschmidt W (2005) Epstein-Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis. PLoS Biol 3:e404

    Article  PubMed  CAS  Google Scholar 

  17. Aoyagi M, Zhai D, Jin C, Aleshin AE, Stec B, Reed JC, Liddington RC (2007) Vaccinia virus N1L protein resembles a B cell lymphoma-2 (Bcl-2) family protein. Protein Sci 16:118–124

    Article  PubMed  CAS  Google Scholar 

  18. Cooray S, Bahar MW, Abrescia NG, McVey CE, Bartlett NW, Chen RA, Stuart DI, Grimes JM, Smith GL (2007) Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. J Gen Virol 88:1656–1666

    Article  PubMed  CAS  Google Scholar 

  19. Wasilenko ST, Banadyga L, Bond D, Barry M (2005) The vaccinia virus F1L protein interacts with the proapoptotic protein Bak and inhibits Bak activation. J Virol 79:14031–14043

    Article  PubMed  CAS  Google Scholar 

  20. DiPerna G, Stack J, Bowie AG, Boyd A, Kotwal G, Zhang Z, Arvikar S, Latz E, Fitzgerald KA, Marshall WL (2004) Poxvirus protein N1L targets the I-kappaB kinase complex, inhibits signaling to NF-kappaB by the tumor necrosis factor superfamily of receptors, and inhibits NF-kappaB and IRF3 signaling by toll-like receptors. J Biol Chem 279:36570–36578

    Article  PubMed  CAS  Google Scholar 

  21. Bowie A, Kiss-Toth E, Symons J, Smith G, Dower S, O’Neill L (2000) A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci USA 97:10162–10167

    Article  PubMed  CAS  Google Scholar 

  22. Harte M, Haga I, Maloney G, Gray P, Reading P, Bartlett N, Smith G, Bowie A, O’Neill L (2003) The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 97:343–351

    Article  CAS  Google Scholar 

  23. Afonso CL, Tulman ER, Lu Z, Zsak L, Osorio FA, Balinsky C, Kutish GF, Rock DL (2002) The genome of swinepox virus. J Virol 76:783–790

    Article  PubMed  CAS  Google Scholar 

  24. Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310:243–257

    Article  PubMed  CAS  Google Scholar 

  25. Brzozka K, Finke S, Conzelmann KK (2005) Identification of the rabies virus alpha/beta interferon antagonist: phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3. J Virol 79:7673–7681

    Article  PubMed  CAS  Google Scholar 

  26. Otsuka M, Kato N, Moriyama M, Taniguchi H, Wang Y, Dharel N, Kawabe T, Omata M (2005) Interaction between the HCV NS3 protein and the host TBK1 protein leads to inhibition of cellular antiviral responses. Hepatology 41:1004–1012

    Article  PubMed  CAS  Google Scholar 

  27. Unterstab G, Ludwig S, Anton A, Planz O, Dauber B, Krappmann D, Heins G, Ehrhardt C, Wolff T (2005) Viral targeting of the interferon-{beta}-inducing Traf family member-associated NF-{kappa}B activator (TANK)-binding kinase-1. Proc Natl Acad Sci USA 102:13640–13645

    Article  PubMed  CAS  Google Scholar 

  28. Graham SC, Bahar MW, Cooray S, Chen RA, Whalen DM, Abrescia NG, Alderton D, Owens RJ, Stuart DI, Smith GL, Grimes JM (2008) Vaccinia virus proteins A52 and B14 Share a Bcl-2-like fold but have evolved to inhibit NF-kappaB rather than apoptosis. PLoS Pathog 4:e1000128

    Article  PubMed  CAS  Google Scholar 

  29. Kurt-Jones E, Mandell L, Whitney C, Padgett A, Gosselin K, Newburger P, Finberg R (2002) Role of toll-like receptor 2 (TLR2) in neutrophil activation: GM-CSF enhances TLR2 expression and TLR2-mediated interleukin 8 responses in neutrophils. Blood 100:1860–1868

    PubMed  CAS  Google Scholar 

  30. Latz E, Visintin A, Lien E, Fitzgerald K, Monks B, Kurt-Jones E, Golenbock D, Espevik T (2002) Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. J Biol Chem 277:7834–7843

    Article  Google Scholar 

  31. Fuerst TR, Niles EG, Studier FW, Moss B (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci USA 83:8122–8126

    Article  PubMed  CAS  Google Scholar 

  32. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M, Claverie J-M, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res (Web Server Issue) 36:W465–W469

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the invaluable advice of Eicke Latz, Kate Fitzgerald, Andrew Bowie, Brian Monks, and Doug Golenbock. This project has been funded in whole or part with funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health: R01 AI070940 to W.L.M. and R21AI069167 to N.S.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Girish J. Kotwal or William L. Marshall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rus, F., Morlock, K., Silverman, N., Pham, N., Kotwal, G.J., Marshall, W.L. (2012). Characterization of Poxvirus-Encoded Proteins that Regulate Innate Immune Signaling Pathways. In: Isaacs, S. (eds) Vaccinia Virus and Poxvirology. Methods in Molecular Biology, vol 890. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-876-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-876-4_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-875-7

  • Online ISBN: 978-1-61779-876-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics