Skip to main content

Bioinformatics for Analysis of Poxvirus Genomes

  • Protocol
  • First Online:
Vaccinia Virus and Poxvirology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 890))

Abstract

In recent years, there have been numerous unprecedented technological advances in the field of molecular biology; these include DNA sequencing, mass spectrometry of proteins, and microarray analysis of mRNA transcripts. Perhaps, however, it is the area of genomics, which has now generated the complete genome sequences of more than 100 poxviruses, that has had the greatest impact on the average virology researcher because the DNA sequence data is in constant use in many different ways by almost all molecular virologists. As this data resource grows, so does the importance of the availability of databases and software tools to enable the bench virologist to work with and make use of this (valuable/expensive) DNA sequence information. Thus, providing researchers with intuitive software to first select and reformat genomics data from large databases, second, to compare/analyze genomics data, and third, to view and interpret large and complex sets of results has become pivotal in enabling progress to be made in modern virology. This chapter is directed at the bench virologist and describes the software required for a number of common bioinformatics techniques that are useful for comparing and analyzing poxvirus genomes. In a number of examples, we also highlight the Viral Orthologous Clusters database system and integrated tools that we developed for the management and analysis of complete viral genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goebel SJ, Johnson GP, Perkus ME, Davis SW, Winslow JP, Paoletti E (1990) The complete DNA sequence of vaccinia virus. Virology 179:247–266

    Article  PubMed  CAS  Google Scholar 

  2. Sonnhammer EL, Durbin R (1995) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167:GC1-10

    Article  PubMed  Google Scholar 

  3. Brodie R, Roper RL, Upton C (2004) JDotter: a Java interface to multiple dotplots generated by dotter. Bioinformatics 20:279–281

    Article  PubMed  CAS  Google Scholar 

  4. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  5. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  PubMed  CAS  Google Scholar 

  6. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  7. Mural RJ (2000) ARTEMIS: a tool for displaying and annotating DNA sequence. Brief Bioinform 1:199–200

    Article  PubMed  CAS  Google Scholar 

  8. Marass F, Upton C (2009) Sequence searcher: a Java tool to perform regular expression and fuzzy searches of multiple DNA and protein sequences. BMC Res Notes 2:14

    Article  PubMed  CAS  Google Scholar 

  9. Huang X, Zhang J (1996) Methods for comparing a DNA sequence with a protein sequence. Comput Appl Biosci 12:497–506

    PubMed  CAS  Google Scholar 

  10. Upton C, Slack S, Hunter AL, Ehlers A, Roper RL (2003) Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. J Virol 77:7590–7600

    Article  PubMed  CAS  Google Scholar 

  11. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  12. Upton C, Hogg D, Perrin D, Boone M, Harris NL (2000) Viral genome organizer: a system for analyzing complete viral genomes. Virus Res 70:55–64

    Article  PubMed  CAS  Google Scholar 

  13. Brodie R, Smith AJ, Roper RL, Tcherepanov V, Upton C (2004) Base-by-base: single nucleotide-level analysis of whole viral genome alignments. BMC Bioinformatics 5:96

    Article  PubMed  CAS  Google Scholar 

  14. Harris NL (1997) Genotator: a workbench for sequence annotation. Genome Res 7:754–762

    PubMed  CAS  Google Scholar 

  15. Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD, Perna NT (2009) Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 25:2071–2073

    Article  PubMed  CAS  Google Scholar 

  16. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  PubMed  CAS  Google Scholar 

  17. Lefkowitz EJ, Upton C, Changayil SS, Buck C, Traktman P, Buller RM (2005) Poxvirus Bioinformatics Resource Center: a comprehensive Poxviridae informational and analytical resource. Nucleic Acids Res 33:D311–316

    Article  PubMed  CAS  Google Scholar 

  18. Tcherepanov V, Ehlers A, Upton C (2006) Genome Annotation Transfer Utility (GATU): rapid annotation of viral genomes using a closely related reference genome. BMC Genomics 7:150

    Article  PubMed  CAS  Google Scholar 

  19. Upton C (2000) Screening predicted coding regions in poxvirus genomes. Virus Genes 20:159–164

    Article  PubMed  CAS  Google Scholar 

  20. Da Silva M, Upton C (2005) Using purine skews to predict genes in AT-rich poxviruses. BMC Genomics 6:22

    Article  PubMed  CAS  Google Scholar 

  21. Li W, Pio F, Pawlowski K, Godzik A (2000) Saturated BLAST: an automated multiple intermediate sequence search used to detect distant homology. Bioinformatics 16:1105–1110

    Article  PubMed  CAS  Google Scholar 

  22. Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23:1073–1079

    Article  PubMed  CAS  Google Scholar 

  23. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(Web Server issue):W244–8

    Article  PubMed  CAS  Google Scholar 

  24. Da Silva M, Shen L, Tcherepanov V, Watson C, Upton C (2006) Predicted function of the vaccinia virus G5R protein. Bioinformatics 22:2846–2850

    Article  PubMed  CAS  Google Scholar 

  25. Da Silva M, Upton C (2009) Vaccinia virus G8R protein: a structural ortholog of proliferating cell nuclear antigen (PCNA). PLoS One 4:e5479

    Article  PubMed  CAS  Google Scholar 

  26. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  PubMed  CAS  Google Scholar 

  27. Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:W526–531

    Article  PubMed  CAS  Google Scholar 

  28. Kim DE, Chivian D, Malmstrom L, Baker D (2005) Automated prediction of domain boundaries in CASP6 targets using Ginzu and RosettaDOM. Proteins 61(Suppl 7):193–200

    Article  PubMed  CAS  Google Scholar 

  29. Senkevich TG, Koonin EV, Moss B (2009) Predicted poxvirus FEN1-like nuclease required for homologous recombination, double-strand break repair and full-size genome formation. Proc Natl Acad Sci USA 106:17921–17926

    Article  PubMed  Google Scholar 

  30. Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJ, Hofmann K, Bairoch A (2002) The PROSITE database, its status in 2002. Nucleic Acids Res 30:235–238

    Article  PubMed  CAS  Google Scholar 

  31. Morgenstern B (1999) DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics 15:211–218

    Article  PubMed  CAS  Google Scholar 

  32. Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:W197–201

    Article  PubMed  CAS  Google Scholar 

  33. Yang Z, Bruno DP, Martens CA, Porcella SF, Moss B (2010) Simultaneous high-resolution analysis of vaccinia virus and host cell transcriptomes by deep RNA sequencing. Proc Natl Acad Sci USA 107:11513–11518

    Article  PubMed  Google Scholar 

  34. Homann O, Johnson A (2010) MochiView: versatile software for genome browsing and DNA motif analysis. BMC Biol 8:49

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the many programmers, researchers, and students who have been involved in the development and testing of this software. This work has been supported by NIH/NIAID (Grant AI48653-02 and Contract HHSN266200400036C) and funds from the Natural Sciences Engineering Research Council of Canada. Drs. C. Upton, R. M. L. Buller, and. E. J. Lefkowitz were the original developers of the Poxvirus Bioinformatics Resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Upton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Da Silva, M., Upton, C. (2012). Bioinformatics for Analysis of Poxvirus Genomes. In: Isaacs, S. (eds) Vaccinia Virus and Poxvirology. Methods in Molecular Biology, vol 890. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-876-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-876-4_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-875-7

  • Online ISBN: 978-1-61779-876-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics