Skip to main content

Animal Models for Prenatal Gene Therapy: Choosing the Right Model

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 891))

Abstract

Testing in animal models is an essential requirement during development of prenatal gene therapy for ­clinical application. Some information can be derived from cell lines or cultured fetal cells, such as the efficiency of gene transfer and the vector dose that might be required. Fetal tissues can also be maintained in culture for short periods of time and transduced ex vivo. Ultimately, however, the use of animals is unavoidable since in vivo experiments allow the length and level of transgene expression to be measured, and provide an assessment of the effect of the delivery procedure and the gene therapy on fetal and neonatal development. The choice of animal model is determined by the nature of the disease and characteristics of the animal, such as its size, lifespan, and immunology, the number of fetuses and their development, parturition, and the length of gestation and the placentation. The availability of a disease model is also critical. In this chapter, we discuss the various animal models that can be used and consider how their characteristics can affect the results obtained. The projection to human application and the regulatory hurdles are also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Castillon N, Avril-Delplanque A, Coraux C et al (2004) Regeneration of a well-differentiated human airway surface epithelium by spheroid and lentivirus vector-transduced airway cells. J Gene Med 6:846–856

    Article  PubMed  Google Scholar 

  2. Robinson V (2005) Finding alternatives: an overview of the 3Rs and the use of animals in research. Sch Sci Rev 87(319):1–4

    Google Scholar 

  3. David AL, Peebles DM, Gregory L et al (2006) Clinically applicable procedure for gene delivery to fetal gut by ultrasound-guided gastric injection: toward prenatal prevention of early-onset intestinal diseases. Hum Gene Ther 17:767–779

    Article  PubMed  CAS  Google Scholar 

  4. Peebles D, Gregory LG, David A et al (2004) Widespread and efficient marker gene expression in the airway epithelia of fetal sheep after minimally invasive tracheal application of recombinant adenovirus in utero. Gene Ther 11:70–78

    Article  PubMed  CAS  Google Scholar 

  5. Lim F-Y, Martin BG, Sena-Esteves M et al (2002) Adeno-associated virus (AAV)-mediated fetal gene transfer in respiratory epithelium and submucosal gland cells in human fetal tracheal organ culture. J Pediatr Surg 37:1051–1057

    Article  PubMed  Google Scholar 

  6. Lim F-Y, Kobinger GP, Weiner DJ et al (2003) Human fetal trachea-SCID mouse xenografts: efficacy of vesicular stomatitis virus-G pseudotyped lentiviral-mediated gene transfer. J Pediatr Surg 38:834–839

    Article  PubMed  Google Scholar 

  7. Dejneka NS, Surace EM, Aleman TS et al (2004) In utero gene therapy rescues vision in a murine model of congenital blindness. Mol Ther 9:182–188

    Article  PubMed  CAS  Google Scholar 

  8. Williams ML, Coleman JE, Haire SE et al (2006) Lentiviral expression of retinal guanylate cyclase-1 (RetGC1) restores vision in an avian model of childhood blindness. PLoS Med 3:e201

    Article  PubMed  Google Scholar 

  9. Seppen J, van der Rijt R, Looije N et al (2003) Long-term correction of bilirubin UDPglucuronyltransferase deficiency in rats by in utero lentiviral gene transfer. Mol Ther 8:593–599

    Article  PubMed  CAS  Google Scholar 

  10. Waddington SN, Nivsarkar MS, Mistry AR et al (2004) Permanent phenotypic correction of hemophilia B in immunocompetent mice by prenatal gene therapy. Blood 104:2714–2721

    Article  PubMed  CAS  Google Scholar 

  11. Karolewski BA, Wolfe JH (2006) Genetic correction of the fetal brain increases the lifespan of mice with the severe multisystemic disease mucopolysaccharidosis type VII. Mol Ther 14:14–24

    Article  PubMed  CAS  Google Scholar 

  12. Wells DJ, Wells KE (2005) What do animal models have to tell us regarding Duchenne muscular dystrophy? Acta Myol 24:172–180

    PubMed  CAS  Google Scholar 

  13. Arruda VR, Stedman HH, Nichols TC et al (2005) Regional intravascular delivery of AAV-2-FIX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model. Blood 105:3458–3464

    Article  PubMed  CAS  Google Scholar 

  14. Baldeschi C, Gache Y, Rattenholl A et al (2003) Genetic correction of canine dystrophic epidermolysis bullosa mediated by retroviral vectors. Hum Mol Genet 12:1897–1905

    Article  PubMed  CAS  Google Scholar 

  15. Meertens L, Zhao Y, Rosic-Kablar S et al (2002) In utero injection of alpha-L-­iduronidase-carrying retrovirus in canine mucopolysaccharidosis type I: infection of ­multiple tissues and neonatal gene expression. Hum Gene Ther 13:1809–1820

    Article  PubMed  CAS  Google Scholar 

  16. Leipprandt JR, Kraemer SA, Haithcock BE et al (1996) Caprine β-mannosidase: sequencing and characterization of the cDNA and identification of the molecular defect of caprine β-mannosidosis. Genomics 37:51–56

    Article  PubMed  CAS  Google Scholar 

  17. Porada CD, Sanada C, Long CR et al (2010) Clinical and molecular characterization of a ­re-established line of sheep exhibiting hemophilia A. J Thromb Haemost 8:276–285

    Article  PubMed  CAS  Google Scholar 

  18. Tessanne K, Long C, Spencer T et al (2011) 337 production of transgenic sheep using recombinant lentivirus microinjection of in vivo produced embryos. Reprod Fertil Dev 23:264

    Article  Google Scholar 

  19. Christensen G, Minamisawa S, Gruber PJ et al (2000) High-efficiency, long-term cardiac expression of foreign genes in living mouse embryos and neonates. Circulation 101:178–184

    Article  PubMed  CAS  Google Scholar 

  20. Lipshutz GS, Gruber CA, Cao Y et al (2001) In utero delivery of adeno-associated viral vectors: intraperitoneal gene transfer produces long-term expression. Mol Ther 3:284–292

    Article  PubMed  CAS  Google Scholar 

  21. Lipshutz GS, Flebbe-Rehwaldt L, Gaensler KML (1999) Adenovirus-mediated gene transfer in the midgestation fetal mouse. J Surg Res 84:150–156

    Article  PubMed  CAS  Google Scholar 

  22. Gregory LG, Waddington SN, Holder MV et al (2004) Highly efficient EIAV-mediated in utero gene transfer and expression in the major muscle groups affected by Duchenne muscular dystrophy. Gene Ther 11:1117–1125

    Article  PubMed  CAS  Google Scholar 

  23. Waddington SN, Buckley SMK, Berloehr C et al (2004) Reduced toxicity of F-deficient Sendai virus vector in the mouse fetus. Gene Ther 11:599–608

    Article  PubMed  CAS  Google Scholar 

  24. Endo M, Henriques-Coelho T, Zoltick PW et al (2010) The developmental stage determines the distribution and duration of gene expression after early intra-amniotic gene transfer using lentiviral vectors. Gene Ther 17:61–71

    Article  PubMed  CAS  Google Scholar 

  25. David AL, McIntosh J, Peebles DM et al (2011) Recombinant adeno-associated virus-mediated in utero gene transfer gives therapeutic transgene expression in the sheep. Hum Gene Ther 22:419–426

    Article  PubMed  CAS  Google Scholar 

  26. Themis M, Waddington SN, Schmidt M et al (2005) Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Mol Ther 12:763–771

    Article  PubMed  CAS  Google Scholar 

  27. Sabatino DE, MacKenzie TC, Peranteau WH et al (2007) Persistent expression of hFIX after tolerance induction by in utero or neonatal administration of AAV-1-F.IX in hemophilia B mice. Mol Ther 15:1677–1685

    Article  PubMed  CAS  Google Scholar 

  28. Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172:603–606

    Article  PubMed  CAS  Google Scholar 

  29. Billingham RE, Brent L, Medawar PB (1956) Quantitative studies on tissue transplantation immunity III Actively acquired tolerance. Phil Trans R Soc Lond B B239:357–369

    Article  Google Scholar 

  30. Howard JG, Michie D (1962) Induction of transplantation immunity in the newborn mouse. Transplant Bull 29:1–6

    Article  PubMed  CAS  Google Scholar 

  31. Holladay SD, Smialowicz RJ (2000) Development of the murine and human immune system: differential effects of immunotoxicants depend on time of exposure. Environ Health Perspect 108:463–473

    PubMed  CAS  Google Scholar 

  32. Morris B (1986) The ontogeny and comportment of lymphoid cells in fetal and neonatal sheep. Immunol Rev 91:219–233

    Article  PubMed  CAS  Google Scholar 

  33. Schinkel PG, Ferguson KA (1953) Skin transplantation in the foetal lamb. Aust J Biol Sci 6:533

    Google Scholar 

  34. Silverstein AM, Prendergast RA, Kraner KL (1964) Fetal response to antigenic stimulus IV. Rejection of skin homografts by the fetal lamb. J Exp Med 119:955–964

    Article  PubMed  CAS  Google Scholar 

  35. Neiderhuber JE, Shermeta D, Turcotte JG, Pikas PW (1971) Kidney transplantation in the foetal lamb. Transplantation 12:161–166

    Article  Google Scholar 

  36. McCullagh P (1988) Immunological tolerance of sheep to skin allografts. Transplantation 46:280–285

    Article  PubMed  CAS  Google Scholar 

  37. McCullagh P (1989) Inability of fetal skin to induce allograft tolerance in fetal lambs. Immunology 67:489–495

    PubMed  CAS  Google Scholar 

  38. Moore NW, Rowson LEA (1961) Attempts to induce tissue tolerance in sheep. Res Vet Sci 2:1

    Google Scholar 

  39. Mitchell RM (1959) Attempts to induce tolerance of renal homografts in sheep by intra-embryonic injection of spleen cells. Transplant Bulletin 6:424–426

    Article  CAS  Google Scholar 

  40. Nettleton PF (2000) Border disease. In: Martin WB, Aitken ID (eds) Diseases of sheep. Blackwell Science, Oxford, pp 95–102

    Google Scholar 

  41. McClure S, McCullagh P, Parsonson IM et al (1988) Maturation of immunological reactivity in the fetal lamb infected with Adabane virus. J Comp Pathol 99:133–143

    Article  PubMed  CAS  Google Scholar 

  42. Silverstein AM, Uhr JW, Lukes RJ (1963) Fetal response to antigenic stimulus II. Antibody production by the fetal lamb. J Exp Med 117:799–812

    Article  PubMed  CAS  Google Scholar 

  43. Silverstein AM, Thorbecke GJ, Kraner KL, Lukes RJ (1963) Fetal response to antigenic stimulus. III. Gamma-globulin production in normal and stimulated fetal lambs. J Immunol 91:384–395

    PubMed  CAS  Google Scholar 

  44. Fahey KJ, Morris B (1978) Humoral immune responses in foetal sheep. Immunology 35:651–661

    PubMed  CAS  Google Scholar 

  45. Fahey KJ, Morris B (1974) Lymphopoiesis and immune reactivity in the fetal lamb. Ser Haematol 7:548–567

    PubMed  CAS  Google Scholar 

  46. Stites DP, Carr MC, Fudenberg HH (1974) Ontogeny of cellular immunity in the human fetus: development of responses to phytohemagglutinin and to allogeneic cells. Cell Immunol 11:257–271

    Article  PubMed  CAS  Google Scholar 

  47. Toivanen P, Uksila J, Leino A et al (1981) Development of mitogen responding T cells and natural killer cells in the human fetus. Immunol Rev 57:89–105

    Article  PubMed  CAS  Google Scholar 

  48. Velardi A, Cooper MD (1984) An immunofluorescence analysis of the ontogeny of myeloid, T, and B lineage cells in mouse hemopoietic tissues. J Immunol 133:672–677

    PubMed  CAS  Google Scholar 

  49. Tyan ML, Herzenberg LA (1968) Studies on the ontogeny of the mouse immune system. II. Immunoglobulin-producing cells. J Immunol 101:446–450

    PubMed  CAS  Google Scholar 

  50. Grossi CE, Velardi A, Cooper MD (1985) Postnatal liver hemopoiesis in mice: generation of pre-B cells, granulocytes, and erythrocytes in discrete colonies. J Immunol 135:2303–2311

    PubMed  CAS  Google Scholar 

  51. Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738

    PubMed  CAS  Google Scholar 

  52. Jerebtsova M, Batshaw ML, Ye X (2002) Humoral immune response to recombinant adenovirus and adeno-associated virus after in utero administration of viral vectors in mice. Pediatr Res 52:95–104

    Article  PubMed  CAS  Google Scholar 

  53. Seppen J, van Til NP, van der Rijt R et al (2006) Immune response to lentiviral bilirubin UDP-glucuronosyltransferase gene transfer in fetal and neonatal rats. Gene Ther 13:672–677

    Article  PubMed  CAS  Google Scholar 

  54. Merianos DJ, Tiblad E, Santore MT et al (2009) Maternal alloantibodies induce a postnatal immune response that limits engraftment following in utero hematopoietic cell transplantation in mice. J Clin Invest 119:2590–2600

    PubMed  CAS  Google Scholar 

  55. Nijagal A, Wegorzewska M, Jarvis E et al (2011) Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice. J Clin Invest. doi:10.1172/JCI44907

  56. Manno CS, Pierce GF, Arruda VR et al (2006) Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med 12:342–347

    Article  PubMed  CAS  Google Scholar 

  57. Goldenberg RL, Culhane JF, Iams JD, Romero R (2008) Epidemiology and causes of preterm birth. Lancet 371:75–84

    Article  PubMed  Google Scholar 

  58. Harrison MR, Keller RL, Hawgood SB et al (2003) A randomised trial of fetal endoscopic tracheal occlusion for severe fetal congenital diaphragmatic hernia. N Eng J Med 349:1916–1924

    Article  CAS  Google Scholar 

  59. Mitchell BF, Taggart MJ (2009) Are animal models relevant to key aspects of human parturition? Am J Physiol Regul Integr Comp Physiol 297:R525–R545

    Article  PubMed  CAS  Google Scholar 

  60. Merlino AA, Welsh TN, Tan H et al (2007) Nuclear progesterone receptors in the human pregnancy myometrium: evidence that parturition involves functional progesterone withdrawal mediated by increased expression of progesterone receptor-A. J Clin Endocrinol Metab 92:1927–1933

    Article  PubMed  CAS  Google Scholar 

  61. Kalkhoven E, Wissink S, van der Saag PT, van der Burg B (1996) Negative interaction between the RelA(p65) subunit of NF-kappaB and the progesterone receptor. J Biol Chem 271:6217–6224

    Article  PubMed  CAS  Google Scholar 

  62. Goldenberg RL, Hauth JC, Andrews WW (2000) Intrauterine infection and preterm delivery. N Engl J Med 342:1500–1507

    Article  PubMed  CAS  Google Scholar 

  63. Romero R (2006) The preterm parturition syndrome. BJOG 113:17–42

    PubMed  CAS  Google Scholar 

  64. Fidel PI Jr, Romero R, Maymon E, Hertelendy F (1998) Bacteria-induced or bacterial product-induced preterm parturition in mice and rabbits is preceded by a significant fall in serum progesterone concentrations. J Matern Fetal Med 7:222–226

    Article  PubMed  CAS  Google Scholar 

  65. Mitchell BF, Zielnik B, Wong S, Roberts CD, Mitchell JM (2005) Intraperitoneal infusion of proinflammatory cytokines does not cause activation of the rat uterus during late gestation. Am J Physiol Endocrinol Metab 289: E658–E664

    Article  PubMed  CAS  Google Scholar 

  66. Baggia S, Gravett MG, Witkin SS, Haluska GJ, Novy MJ (1996) Interleukin-1 beta intra-amniotic infusion induces tumor necrosis ­factor-alpha, prostaglandin production, and preterm contractions in pregnant rhesus monkeys. J Soc Gynecol Investig 3:121–126

    Article  PubMed  CAS  Google Scholar 

  67. Chwalisz K, Fahrenholz F, Hackenberg M, Garfield R, Elger W (1991) The progesterone antagonist onapristone increases the effectiveness of oxytocin to produce delivery without changing the myometrial oxytocin receptor concentrations. Am J Obstet Gynecol 165:1760–1770

    PubMed  CAS  Google Scholar 

  68. Benirschke K, Kaufmann P (1990) Placental types in pathology of the human placenta. Springer, New York

    Google Scholar 

  69. Wooding FB (1992) Current topic: the synepitheliochorial placenta of ruminants: binucleate cell fusions and hormone production. Placenta 13:101–113

    Article  PubMed  CAS  Google Scholar 

  70. Enders AC (1965) A comparative study of the fine structure of the trophoblast in several hemochorial placentas. Am J Anat 116:29–67

    Article  PubMed  CAS  Google Scholar 

  71. Hamilton WJ, Boyd JD (1970) The human placenta. Heffer and Sons, Cambridge

    Google Scholar 

  72. Kaufmann P, Davidoff M (1977) The guinea pig placenta. Adv Anat Embryol Cell Biol 53:1–90

    Google Scholar 

  73. Scott VL, Burgess SC, Shack LA, Lockett NN, Coats KS (2008) Expression of CD134 and CXCR4 mRNA in term placentas from FIV-infected and control cats. Vet Immunol Immunopathol 123:90–96

    Article  PubMed  CAS  Google Scholar 

  74. Bergelson JM (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323

    Article  PubMed  CAS  Google Scholar 

  75. Koi H, Zhang J, Makrigiannakis A et al (2001) Differential expression of the coxsackievirus and adenovirus receptor regulates adenovirus infection of the placenta. Biol Reprod 64:1001–1009

    Article  PubMed  CAS  Google Scholar 

  76. MacCalman CD, Furth EE, Omigbodun A et al (1996) Transduction of human trophoblast cells by recombinant adenoviruses is differentiation dependent. Biol Reprod 54:682–691

    Article  PubMed  CAS  Google Scholar 

  77. Parry S, Holder J, Strauss JR (1997) Mechanisms of trophoblast-virus interaction. J Reprod Immunol 37:25–34

    Article  PubMed  CAS  Google Scholar 

  78. Committee for Medicinal Products for Human Use (2006) Guideline on non-clinical testing for inadvertent germline transmission of gene transfer vectors (273974). European Medicines Agency, London

    Google Scholar 

  79. Committee for Medicinal Products for Human Use (2008) Guideline on the non-clinical studies required before first clinical use of gene therapy medicinal products (125459). European Medicines Agency, London

    Google Scholar 

  80. Siman CM, Sibley CP, Jones CJ et al (2001) The functional regeneration of syncytiotrophoblast in cultured explants of term placenta. Am J Physiol Regul Integr Comp Physiol 280:R1116–R1122

    PubMed  CAS  Google Scholar 

  81. Crocker IP, Tansinda DM, Baker PN (2004) Altered cell kinetics in cultured placental villous explants in pregnancies complicated by pre-eclampsia and intrauterine growth restriction. J Pathol 204:11–18

    Article  PubMed  Google Scholar 

  82. Brownbill P, Edwards D, Jones C et al (1995) Mechanisms of alphafetoprotein transfer in the perfused human placental cotyledon from uncomplicated pregnancy. J Clin Invest 96:2220–2226

    Article  PubMed  CAS  Google Scholar 

  83. Brownbill P, Mills TA, Soydemir DF, Sibley CP (2008) Vasoactivity to and endogenous release of vascular endothelial growth factor in the in vitro perfused human placental lobule from pregnancies complicated by preeclampsia. Placenta 29:950–955

    Article  PubMed  CAS  Google Scholar 

  84. Sibley CP, Birdsey TJ, Brownbill P et al (1998) Mechanisms of maternofetal exchange across the human placenta. Biochem Soc Trans 26:86–91

    PubMed  CAS  Google Scholar 

  85. Wells D, Delhanty JD (2001) Preimplantation genetic diagnosis: applications for molecular medicine. Trends Mol Med 7:23–30

    Article  PubMed  CAS  Google Scholar 

  86. Snowdon C, Green JM (1997) Preimplantation diagnosis and other reproductive options: attitudes of male and female carriers of recessive disorders. Hum Reprod 12:341–350

    Article  PubMed  CAS  Google Scholar 

  87. Benirschke K, Kaufmann P, Baergen RN (2006) Pathology of the human placenta. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna L. David PhD, MRCOG .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC.

About this protocol

Cite this protocol

Mehta, V., Peebles, D., David, A.L. (2012). Animal Models for Prenatal Gene Therapy: Choosing the Right Model. In: Coutelle, C., Waddington, S. (eds) Prenatal Gene Therapy. Methods in Molecular Biology, vol 891. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-873-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-873-3_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-872-6

  • Online ISBN: 978-1-61779-873-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics