Skip to main content

Vector Systems for Prenatal Gene Therapy: Principles of Non-viral Vector Design and Production

  • Protocol
  • First Online:
Prenatal Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 891))

Abstract

Gene therapy vectors based on viruses are the most effective gene delivery systems in use today and although efficient at gene transfer their potential toxicity (Hacein-Bey-Abina et al., Science 302:415–419, 2003) provides impetus for the development of safer non-viral alternatives. An ideal vector for human gene therapy should deliver sustainable therapeutic levels of gene expression without affecting the viability of the host at either the cellular or somatic level. Vectors, which comprise entirely human elements, may provide the most suitable method of achieving this. Non-viral vectors are attractive alternatives to viral gene delivery systems because of their low toxicity, relatively easy production, and great versatility. The development of more efficient, economically prepared, and safer gene delivery vectors is a crucial prerequisite for their successful clinical application and remains a primary strategic task of gene therapy research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  PubMed  CAS  Google Scholar 

  2. Wolff JA, Malone RW, Williams P et al (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  PubMed  CAS  Google Scholar 

  3. Hickman MA, Malone RW, Lehmann-Bruinsma K et al (1994) Gene expression following direct injection of DNA into liver. Hum Gene Ther 5: 1477–1483

    Article  PubMed  CAS  Google Scholar 

  4. Budker V, Zhang G, Knechtle S et al (1996) Naked DNA delivered intraportally expresses efficiently in hepatocytes. Gene Ther 3:593–598

    PubMed  CAS  Google Scholar 

  5. Choate KA, Khavari PA (1997) Direct cutaneous gene delivery in a human genetic skin disease. Hum Gene Ther 8:1659–1665

    Article  PubMed  CAS  Google Scholar 

  6. Meyer KB, Thompson MM, Levy MY et al (1995) Intratracheal gene delivery to the mouse airway: characterization of plasmid DNA expression and pharmacokinetics. Gene Ther 2: 450–460

    PubMed  CAS  Google Scholar 

  7. Reilly JP, Grise MA, Fortuin FD et al (2005) Long-term (2-year) clinical events following transthoracic intramyocardial gene transfer of VEGF-2 in no-option patients. J Interv Cardiol 18:27–31

    Article  PubMed  Google Scholar 

  8. Schwartz B, Benoist C, Abdallah B et al (1996) Gene transfer by naked DNA into adult mouse brain. Gene Ther 3:405–411

    PubMed  CAS  Google Scholar 

  9. Zelenin AV, Kolesnikov VA, Tarasenko OA et al (1997) Bacterial beta-galactosidase and human dystrophin genes are expressed in mouse skeletal muscle fibers after ballistic transfection. FEBS Lett 414:319–322

    Article  PubMed  CAS  Google Scholar 

  10. Mehier-Humbert S, Guy RH (2005) Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv Drug Deliv Rev 57:733–753

    Article  PubMed  CAS  Google Scholar 

  11. Gao X, Kim KS, Liu D (2007) Nonviral gene delivery: what we know and what is next. AAPS J 9:E92–104

    Article  PubMed  CAS  Google Scholar 

  12. Taniyama Y, Tachibana K, Hiraoka K et al (2002) Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 105:1233–1239

    Article  PubMed  CAS  Google Scholar 

  13. Taniyama Y, Tachibana K, Hiraoka K et al (2002) Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther 9: 372–380

    Article  PubMed  CAS  Google Scholar 

  14. Lawrie A, Brisken AF, Francis SE et al (2000) Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther 7:2023–2027

    Article  PubMed  CAS  Google Scholar 

  15. Wells DJ (2004) Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 11:1363–1369

    Article  PubMed  CAS  Google Scholar 

  16. Wolff JA, Williams P, Acsadi G et al (1991) Conditions affecting direct gene transfer into rodent muscle in vivo. Biotechniques 11: 474–485

    PubMed  CAS  Google Scholar 

  17. Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6: 1258–1266

    Article  PubMed  CAS  Google Scholar 

  18. Zhang G, Budker V, Wolff JA (1999) High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 10:1735–1737

    Article  PubMed  CAS  Google Scholar 

  19. Budker V, Zhang G, Danko I et al (1998) The efficient expression of intravascularly delivered DNA in rat muscle. Gene Ther 5:272–276

    Article  PubMed  CAS  Google Scholar 

  20. Zhang G, Gao X, Song YK et al (2004) Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther 11:675–682

    Article  PubMed  CAS  Google Scholar 

  21. Mahato RI, Takakura Y, Hashida M (1997) Nonviral vectors for in vivo gene delivery: physicochemical and pharmacokinetic considerations. Crit Rev Ther Drug Carrier Syst 14:133–172

    Article  PubMed  CAS  Google Scholar 

  22. Mahato RI, Kawabata K, Nomura T et al (1995) Physicochemical and pharmacokinetic characteristics of plasmid DNA/cationic liposome complexes. J Pharm Sci 84:1267–1271

    Article  PubMed  CAS  Google Scholar 

  23. Felgner PL, Gadek TR, Holm M et al (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84:7413–7417

    Article  PubMed  CAS  Google Scholar 

  24. Liu D, Ren T, Gao X (2003) Cationic transfection lipids. Curr Med Chem 10:1307–1315

    Article  PubMed  CAS  Google Scholar 

  25. Li S, Huang L (2000) Nonviral gene therapy: promises and challenges. Gene Ther 7:31–34

    Article  PubMed  CAS  Google Scholar 

  26. Hemmi H, Takeuchi O, Kawai T et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    Article  PubMed  CAS  Google Scholar 

  27. Ito Y, Kawakami S, Charoensit P et al (2009) Evaluation of proinflammatory cytokine production and liver injury induced by plasmid DNA/cationic liposome complexes with various mixing ratios in mice. Eur J Pharm Biopharm 71:303–309

    Article  PubMed  CAS  Google Scholar 

  28. Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9:1647–1652

    Article  PubMed  CAS  Google Scholar 

  29. Brunner S, Furtbauer E, Sauer T et al (2002) Overcoming the nuclear barrier: cell cycle independent nonviral gene transfer with linear polyethylenimine or electroporation. Mol Ther 5: 80–86

    Article  PubMed  CAS  Google Scholar 

  30. Kawakami S, Ito Y, Charoensit P et al (2006) Evaluation of proinflammatory cytokine production induced by linear and branched polyethylenimine/plasmid DNA complexes in mice. J Pharmacol Exp Ther 317:1382–1390

    Article  PubMed  CAS  Google Scholar 

  31. Boussif O, Lezoualc’h F, Zanta MA et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92:7297–7301

    Article  PubMed  CAS  Google Scholar 

  32. Hackett PB, Podetz-Petersen KM, Bell JB et al (2010) Gene expression in lung and liver after intravenous infusion of polyethyleneimine complexes and hydrodynamic delivery of sleeping beauty transposons. Hum Gene Ther 21(2): 210–20

    Article  PubMed  Google Scholar 

  33. Oh YK, Kim JP, Yoon H et al (2001) Prolonged organ retention and safety of plasmid DNA administered in polyethylenimine complexes. Gene Ther 8:1587–1592

    Article  PubMed  CAS  Google Scholar 

  34. Guo ZS, Wang LH, Eisensmith RC et al (1996) Evaluation of promoter strength for hepatic gene expression in vivo following adenovirus-mediated gene transfer. Gene Ther 3:802–810

    PubMed  CAS  Google Scholar 

  35. Boshart M, Weber F, Jahn G et al (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41:521–530

    Article  PubMed  CAS  Google Scholar 

  36. Zhang XY, Ni YS, Saifudeen Z et al (1995) Increasing binding of a transcription factor immediately downstream of the cap site of a cytomegalovirus gene represses expression. Nucleic Acids Res 23:3026–3033

    Article  PubMed  CAS  Google Scholar 

  37. Sinclair JH, Baillie J, Bryant LA et al (1992) Repression of human cytomegalovirus major immediate early gene expression in a monocytic cell line. J Gen Virol 73(Pt 2):433–435

    Article  PubMed  CAS  Google Scholar 

  38. Gill DR, Smyth SE, Goddard CA et al (2001) Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1alpha promoter. Gene Ther 8:1539–1546

    Article  PubMed  CAS  Google Scholar 

  39. Schorpp M, Jager R, Schellander K et al (1996) The human ubiquitin C promoter directs high ubiquitous expression of transgenes in mice. Nucleic Acids Res 24:1787–1788

    Article  PubMed  CAS  Google Scholar 

  40. Yew NS, Przybylska M, Ziegler RJ et al (2001) High and sustained transgene expression in vivo from plasmid vectors containing a hybrid ubiquitin promoter. Mol Ther 4:75–82

    Article  PubMed  CAS  Google Scholar 

  41. Cullen BR (2003) Nuclear RNA export. J Cell Sci 116:587–597

    Article  PubMed  Google Scholar 

  42. Buchman AR, Berg P (1988) Comparison of intron-dependent and intron-independent gene expression. Mol Cell Biol 8:4395–4405

    PubMed  CAS  Google Scholar 

  43. Huang J, Liang TJ (1993) A novel hepatitis B virus (HBV) genetic element with Rev response element-like properties that is essential for expression of HBV gene products. Mol Cell Biol 13:7476–7486

    PubMed  CAS  Google Scholar 

  44. Donello JE, Loeb JE, Hope TJ (1998) Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J Virol 72:5085–5092

    PubMed  CAS  Google Scholar 

  45. Krieg AM (2000) The role of CpG motifs in innate immunity. Curr Opin Immunol 12:35–43

    Article  PubMed  CAS  Google Scholar 

  46. Chen ZY, Riu E, He CY et al (2008) Silencing of episomal transgene expression in liver by plasmid bacterial backbone DNA is independent of CpG methylation. Mol Ther 16: 548–556

    Article  PubMed  CAS  Google Scholar 

  47. Yew NS, Wang KX, Przybylska M et al (1999) Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid: pDNA complexes. Hum Gene Ther 10: 223–234

    Article  PubMed  CAS  Google Scholar 

  48. Argyros O, Wong SP, Fedonidis C et al (2011) Development of S/MAR minicircles for enhanced and persistent transgene expression in the mouse liver. J Mol Med 89:515–29

    Article  PubMed  CAS  Google Scholar 

  49. Gill D, Pringle I, Hyde SC (2009) Progress and prospects: the design and production of plasmid vectors. Gene Ther 16:165–171

    Article  PubMed  CAS  Google Scholar 

  50. Wong SP, Argyros O, Coutelle C et al (2009) Strategies for the episomal modification of cells. Curr Opin Mol Ther 11:433–441

    PubMed  CAS  Google Scholar 

  51. Rothenfusser S, Tuma E, Wagner M et al (2003) Recent advances in immunostimulatory CpG oligonucleotides. Curr Opin Mol Ther 5: 98–106

    PubMed  CAS  Google Scholar 

  52. Jackson DA, Cook PR (1995) The structural basis of nuclear function. Int Rev Cytol 162A: 125–149

    PubMed  CAS  Google Scholar 

  53. Piechaczek C, Fetzer C, Baiker A et al (1999) A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res 27:426–428

    Article  PubMed  CAS  Google Scholar 

  54. Jenke AC, Scinteie MF, Stehle IM et al (2004) Expression of a transgene encoded on a non-viral episomal vector is not subject to epigenetic silencing by cytosine methylation. Mol Biol Rep 31:85–90

    Article  PubMed  CAS  Google Scholar 

  55. Jenke BH, Fetzer CP, Stehle IM et al (2002) An episomally replicating vector binds to the nuclear matrix protein SAF-A in vivo. EMBO Rep 3:349–354

    Article  PubMed  CAS  Google Scholar 

  56. Papapetrou EP, Ziros PG, Micheva ID et al (2006) Gene transfer into human hematopoietic progenitor cells with an episomal vector carrying an S/MAR element. Gene Ther 13: 40–51

    Article  PubMed  CAS  Google Scholar 

  57. Girod PA, Nguyen DQ, Calabrese D et al (2007) Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat Methods 4: 747–753

    Article  PubMed  CAS  Google Scholar 

  58. Stief A, Winter DM, Stratling WH et al (1989) A nuclear DNA attachment element mediates elevated and position-independent gene activity. Nature 341:343–345

    Article  PubMed  CAS  Google Scholar 

  59. Klehr D, Schlake T, Maass K et al (1992) Scaffold-attached regions (SAR elements) mediate transcriptional effects due to butyrate. Biochemistry 31:3222–3229

    Article  PubMed  CAS  Google Scholar 

  60. Bonifer C, Vidal M, Grosveld F et al (1990) Tissue specific and position independent expression of the complete gene domain for chicken lysozyme in transgenic mice. EMBO J 9:2843–2848

    PubMed  CAS  Google Scholar 

  61. McKnight RA, Shamay A, Sankaran L et al (1992) Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. Proc Natl Acad Sci U S A 89:6943–6947

    Article  PubMed  CAS  Google Scholar 

  62. Lichtenstein M, Keini G, Cedar H et al (1994) B cell-specific demethylation: a novel role for the intronic kappa chain enhancer sequence. Cell 76:913–923

    Article  PubMed  CAS  Google Scholar 

  63. Forrester WC, Fernandez LA, Grosschedl R (1999) Nuclear matrix attachment regions antagonize methylation-dependent repression of long-range enhancer-promoter interactions. Genes Dev 13:3003–3014

    Article  PubMed  CAS  Google Scholar 

  64. Girod PA, Mermod N (2003) Use of scaffold/matrix-attachment regions for protein production. Elsevier Science B.V. Makrides SC (Ed.) Gene Transfer and Expression in Mammalian Cells, Chapter 10

    Google Scholar 

  65. Kalos M, Fournier R (1995) Position-independant transgene expression mediated by boundary elements from the apoliprotein B chromatin domain. Mol Cell Biol 15:198–207

    PubMed  CAS  Google Scholar 

  66. Ottaviani D, Lever E, Takousis P et al (2008) Anchoring the genome. Genome Biol 9:201

    Article  PubMed  Google Scholar 

  67. Harraghy N, Gaussin A, Mermod N (2008) Sustained transgene expression using MAR elements. Curr Gene Ther 8:353–366

    Article  PubMed  CAS  Google Scholar 

  68. Mielke C, Kohwi Y, Kohwi-Shigematsu T et al (1990) Hierarchical binding of DNA fragments derived from scaffold-attached regions: correlation of properties in vitro and function in vivo. Biochemistry 29:7475–7485

    Article  PubMed  CAS  Google Scholar 

  69. Allen GC, Hall G Jr, Michalowski S et al (1996) High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobacco. Plant Cell 8:899–913

    PubMed  CAS  Google Scholar 

  70. Stehle IM, Postberg J, Rupprecht S et al (2007) Establishment and mitotic stability of an extra-chromosomal mammalian replicon. BMC Cell Biol 8:33

    Article  PubMed  Google Scholar 

  71. Bigger BW, Tolmachov O, Collombet JM et al (2001) An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J Biol Chem 276:23018–23027

    Article  PubMed  CAS  Google Scholar 

  72. Chen ZY, He CY, Ehrhardt A et al (2003) Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 8:495–500

    Article  PubMed  CAS  Google Scholar 

  73. Darquet AM, Rangara R, Kreiss P et al (1999) Minicircle: an improved DNA molecule for in vitro and in vivo gene transfer. Gene Ther 6: 209–218

    Article  PubMed  CAS  Google Scholar 

  74. Nehlsen K, Broll S, Bode J (2006) Replicating minicircles: generation of nonviral episomes for the efficient modification of dividing cells. Gene Ther Mol Biol 10:233–244

    Google Scholar 

  75. Riu E, Chen ZY, Xu H et al (2007) Histone modifications are associated with the persistence or silencing of vector-mediated transgene expression in vivo. Mol Ther 15:1348–1355

    Article  PubMed  CAS  Google Scholar 

  76. Vaysse L, Gregory LG, Harbottle RP et al (2006) Nuclear-targeted minicircle to enhance gene transfer with non-viral vectors in vitro and in vivo. J Gene Med 8:754–763

    Article  PubMed  CAS  Google Scholar 

  77. Zhang X, Epperly MW, Kay MA et al (2008) Radioprotection in vitro and in vivo by minicircle plasmid carrying the human manganese superoxide dismutase transgene. Hum Gene Ther 19:820–826

    Article  PubMed  CAS  Google Scholar 

  78. Chang CW, Christensen LV, Lee M et al (2008) Efficient expression of vascular endothelial growth factor using minicircle DNA for angiogenic gene therapy. J Control Release 125: 155–163

    Article  PubMed  CAS  Google Scholar 

  79. Kim S, Landy A (1992) Lambda Int protein bridges between higher order complexes at two distant chromosomal foci attL and attR. Science 256:198–203

    Article  PubMed  CAS  Google Scholar 

  80. Abremski K, Hoess R (1984) Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem 259:1509–1514

    PubMed  CAS  Google Scholar 

  81. Sternberg N, Sauer B, Hoess R et al (1986) Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation. J Mol Biol 187:197–212

    Article  PubMed  CAS  Google Scholar 

  82. Thorpe HM, Wilson SE, Smith MC (2000) Control of directionality in the site-specific recombination system of the Streptomyces phage phiC31. Mol Microbiol 38:232–241

    Article  PubMed  CAS  Google Scholar 

  83. Groth AC, Olivares EC, Thyagarajan B et al (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A 97:5995–6000

    Article  PubMed  CAS  Google Scholar 

  84. Chen L, Woo SL (2005) Complete and persistent phenotypic correction of phenylketonuria in mice by site-specific genome integration of murine phenylalanine hydroxylase cDNA. Proc Natl Acad Sci U S A 102:15581–15586

    Article  PubMed  CAS  Google Scholar 

  85. Benzinger R, Enquist LW, Skalka A (1975) Transfection of Escherichia coli spheroplasts. V. Activity of recBC nuclease in rec  + and rec minus spheroplasts measured with different forms of bacteriophage DNA. J Virol 15: 861–871

    PubMed  CAS  Google Scholar 

  86. Buchholz F, Ringrose L, Angrand PO et al (1996) Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucl Acids Res 24: 4256–4262

    Article  PubMed  CAS  Google Scholar 

  87. Mislick KA, Baldeschwieler JD (1996) Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci U S A 93:12349–12354

    Article  PubMed  CAS  Google Scholar 

  88. Gharwan H, Wightman L, Kircheis R et al (2003) Nonviral gene transfer into fetal mouse livers (a comparison between the cationic polymer PEI and naked DNA). Gene Ther 10: 810–817

    Article  PubMed  CAS  Google Scholar 

  89. Pollard H, Remy JS, Loussouarn G et al (1998) Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem 273: 7507–7511

    Article  PubMed  CAS  Google Scholar 

  90. Wong SP, Argyros O, Howe SJ et al (2010) Systemic gene transfer of polyethylenimine (PEI)-plasmid DNA complexes to neonatal mice. J Control Release 150:298–306

    Article  PubMed  Google Scholar 

  91. Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24:979–993

    Article  PubMed  CAS  Google Scholar 

  92. Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103:865–872

    Article  PubMed  CAS  Google Scholar 

  93. Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240:237–246

    Article  PubMed  CAS  Google Scholar 

  94. Sato M, Tanigawa M, Kikuchi N (2004) Nonviral gene transfer to surface skin of mid-gestational murine embryos by intraamniotic injection and subsequent electroporation. Mol Reprod Dev 69:268–277

    Article  PubMed  CAS  Google Scholar 

  95. Garcia-Frigola C, Carreres MI, Vegar C et al (2007) Gene delivery into mouse retinal ganglion cells by in utero electroporation. BMC Dev Biol 7:103

    Article  PubMed  Google Scholar 

  96. Kay MA, He CY, Chen ZY (2010) A robust system for production of minicircle DNA vectors. Nat Biotechnol 28:1287–1289

    Article  PubMed  CAS  Google Scholar 

  97. Koping-Hoggard M, Tubulekas I, Guan H et al (2001) Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 8:1108–1121

    Article  PubMed  CAS  Google Scholar 

  98. Yang PT, Hoang L, Jia WW et al (2011) In utero gene delivery using Chitosan-DNA nanoparticles in mice. J Surg Res 171(2):691–9

    Article  PubMed  CAS  Google Scholar 

  99. Sase M, Miwa I, Sumie M et al (2005) Gastric emptying cycles in the human fetus. Am J Obstet Gynecol 193:1000–1004

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Harbottle PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC.

About this protocol

Cite this protocol

Wong, S.P., Argyros, O., Harbottle, R.P. (2012). Vector Systems for Prenatal Gene Therapy: Principles of Non-viral Vector Design and Production. In: Coutelle, C., Waddington, S. (eds) Prenatal Gene Therapy. Methods in Molecular Biology, vol 891. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-873-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-873-3_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-872-6

  • Online ISBN: 978-1-61779-873-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics