Skip to main content

Vector Systems for Prenatal Gene Therapy: Principles of Adeno-Associated Virus Vector Design and Production

  • Protocol
  • First Online:
Prenatal Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 891))

Abstract

Vectors based on adeno-associated virus (AAV) show great promise for safe, efficacious therapeutic gene transfer in extensive pre-clinical data and, recently, in clinical trials. Careful vector design and choice from a range of natural or synthetic pseudotypes allow targeted, efficient, and sustained expression of therapeutic genes. The efficiency of gene delivery can be further enhanced through the use of drug pre-treatment or co-infection with a suitable helper virus. This chapter describes current best practice for AAV production, including complete methods for: (1) efficient generation of vector without the use of helper viruses, simplifying the transition to GMP-grade production for clinical applications; (2) efficient and easily scalable purification of the virus by affinity chromatography, allowing rapid production of highly concentrated, high titre stocks; (3) reliable quantification and assaying of viral stocks, along with short- and long-term storage considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mueller C, Flotte TR (2008) Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther 15(11):858–63

    Article  PubMed  CAS  Google Scholar 

  2. Heilbronn R, Weger S (2010) Viral vectors for gene transfer: current status of gene therapeutics. Handb Exp Pharmacol 197:143–70

    Article  PubMed  CAS  Google Scholar 

  3. Walther W, Stein U (2000) Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs 60(2):249–71

    Article  PubMed  CAS  Google Scholar 

  4. Vandenberghe LH, Wilson JM, Gao G (2009) Tailoring the AAV vector capsid for gene therapy. Gene Ther 16(3):311–9

    Article  PubMed  CAS  Google Scholar 

  5. Choi VW, McCarty DM, Samulski RJ (2005) AAV hybrid serotypes: improved vectors for gene delivery. Curr Gene Ther 5(3):299–310

    Article  PubMed  CAS  Google Scholar 

  6. Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18(1):80–6

    Article  PubMed  CAS  Google Scholar 

  7. Koczot FJ, Carter BJ, Garon CF, Rose JA (1973) Self-complementarity of terminal sequences within plus or minus strands of adenovirus-associated virus DNA. Proc Natl Acad Sci USA 70(1):215–9

    Article  PubMed  CAS  Google Scholar 

  8. Goncalves MA (2005) Adeno-associated virus: from defective virus to effective vector. Virol J 2:43

    Article  PubMed  Google Scholar 

  9. Zhang H, Xie J, Xie Q et al (2009) Adenovirus-adeno-associated virus hybrid for large-scale recombinant adeno-associated virus production. Hum Gene Ther 20(9):922–9

    Article  PubMed  CAS  Google Scholar 

  10. Smith RH (2008) Adeno-associated virus integration: virus versus vector. Gene Ther 15(11):817–22

    Article  PubMed  CAS  Google Scholar 

  11. Allocca M, Doria M, Petrillo M et al (2008) Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 118(5):1955–64

    Article  PubMed  CAS  Google Scholar 

  12. Lai Y, Yue Y, Duan D (2010) Evidence for the failure of adeno-associated virus serotype 5 to package a viral genome  >  or  =  8.2 kb. Mol Ther 18(1):75–9

    Article  PubMed  CAS  Google Scholar 

  13. Dong B, Nakai H, Xiao W (2010) Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther 18(1):87–92

    Article  PubMed  CAS  Google Scholar 

  14. Schmidt M, Voutetakis A, Afione S et al (2008) Adeno-associated virus type 12 (AAV12): a novel AAV serotype with sialic acid- and heparan sulfate proteoglycan-independent transduction activity. J Virol 82(3):1399–406

    Article  PubMed  CAS  Google Scholar 

  15. Cearley CN, Vandenberghe LH, Parente MK et al (2008) Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Mol Ther 16(10):1710–8

    Article  PubMed  CAS  Google Scholar 

  16. Wu Z, Asokan A, Grieger JC et al (2006) Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes. J Virol 80(22):11393–7

    Article  PubMed  CAS  Google Scholar 

  17. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE (2008) Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16(6):1073–80

    Article  PubMed  CAS  Google Scholar 

  18. Asokan A, Conway JC, Phillips JL et al (2010) Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol 28(1):79–82

    Article  PubMed  CAS  Google Scholar 

  19. Gray SJ, Blake BL, Criswell HE et al (2010) Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB). Mol Ther 18(3):570–8

    Article  PubMed  CAS  Google Scholar 

  20. Grimm D, Lee JS, Wang L et al (2008) In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 82(12):5887–911

    Article  PubMed  CAS  Google Scholar 

  21. Davidoff AM, Ng CY, Zhou J et al (2003) Sex significantly influences transduction of murine liver by recombinant adeno-associated viral vectors through an androgen-dependent pathway. Blood 102(2):480–8

    Article  PubMed  CAS  Google Scholar 

  22. Nathwani AC, Cochrane M, McIntosh J et al (2009) Enhancing transduction of the liver by adeno-associated viral vectors. Gene Ther 16(1):60–9

    Article  PubMed  CAS  Google Scholar 

  23. Duan D, Yue Y, Yan Z et al (2000) Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. J Clin Invest 105(11):1573–87

    Article  PubMed  CAS  Google Scholar 

  24. Monahan PE, Lothrop CD, Sun J et al (2010) Proteasome inhibitors enhance gene delivery by AAV virus vectors expressing large genomes in hemophilia mouse and dog models: a strategy for broad clinical application. Mol Ther 18(11):1907–16

    Article  PubMed  CAS  Google Scholar 

  25. Yan Z, Zak R, Zhang Y et al (2004) Distinct classes of proteasome-modulating agents cooperatively augment recombinant adeno-associated virus type 2 and type 5-mediated transduction from the apical surfaces of human airway epithelia. J Virol 78(6):2863–74

    Article  PubMed  CAS  Google Scholar 

  26. Douar AM, Poulard K, Stockholm D et al (2001) Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation. J Virol 75(4):1824–33

    Article  PubMed  CAS  Google Scholar 

  27. Xiao X, Li J, Samulski RJ (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72(3):2224–32

    PubMed  CAS  Google Scholar 

  28. Streck CJ, Dickson PV, Ng CY et al (2005) Adeno-associated virus vector-mediated systemic delivery of IFN-beta combined with low-dose cyclophosphamide affects tumor regression in murine neuroblastoma models. Clin Cancer Res 11(16):6020–9

    Article  PubMed  CAS  Google Scholar 

  29. Chiorini JA, Kim F, Yang L, Kotin RM (1999) Cloning and characterization of adeno-­associated virus type 5. J Virol 73(2):1309–19

    PubMed  CAS  Google Scholar 

  30. Louis N, Evelegh C, Graham FL (1997) Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line. Virology 233(2):423–9

    Article  PubMed  CAS  Google Scholar 

  31. Rio DC, Clark SG, Tjian R (1985) A mammalian host-vector system that regulates expression and amplification of transfected genes by temperature induction. Science 227(4682):23–8

    Article  PubMed  CAS  Google Scholar 

  32. Burova E, Ioffe E (2005) Chromatographic purification of recombinant adenoviral and adeno-associated viral vectors: methods and implications. Gene Ther 12(Suppl 1):S5–17

    Article  PubMed  CAS  Google Scholar 

  33. Kohlbrenner E, Aslanidi G, Nash K et al (2005) Successful production of pseudotyped rAAV vectors using a modified baculovirus expression system. Mol Ther 12(6):1217–25

    PubMed  CAS  Google Scholar 

  34. Zolotukhin S, Potter M, Zolotukhin I et al (2002) Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 28(2):158–67

    Article  PubMed  CAS  Google Scholar 

  35. Smith RH, Ding C, Kotin RM (2003) Serum-free production and column purification of adeno-associated virus type 5. J Virol Methods 114(2):115–24

    Article  PubMed  CAS  Google Scholar 

  36. Anderson R, Macdonald I, Corbett T et al (2000) A method for the preparation of highly purified adeno-associated virus using affinity column chromatography, protease digestion and solvent extraction. J Virol Methods 85(1–2):23–34

    Article  PubMed  CAS  Google Scholar 

  37. Zolotukhin S (2005) Production of recombinant adeno-associated virus vectors. Hum Gene Ther 16(5):551–7

    Article  PubMed  CAS  Google Scholar 

  38. Clark KR, Liu X, McGrath JP, Johnson PR (1999) Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum Gene Ther 10(6):1031–9

    Article  PubMed  CAS  Google Scholar 

  39. Zolotukhin S, Byrne BJ, Mason E et al (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 6(6):973–85

    Article  PubMed  CAS  Google Scholar 

  40. Auricchio A, O’Connor E, Hildinger M, Wilson JM (2001) A single-step affinity column for purification of serotype-5 based adeno-associated viral vectors. Mol Ther 4(4):372–4

    Article  PubMed  CAS  Google Scholar 

  41. Smith RH, Levy JR, Kotin RM (2009) A simplified baculovirus-AAV expression vector system coupled with one-step affinity purification yields high-titer rAAV stocks from insect cells. Mol Ther 17(11):1888–96

    Article  PubMed  CAS  Google Scholar 

  42. Kaludov N, Handelman B, Chiorini JA (2002) Scalable purification of adeno-associated virus type 2, 4, or 5 using ion-exchange chromatography. Hum Gene Ther 13(10):1235–43

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit C. Nathwani MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC.

About this protocol

Cite this protocol

Binny, C.J., Nathwani, A.C. (2012). Vector Systems for Prenatal Gene Therapy: Principles of Adeno-Associated Virus Vector Design and Production. In: Coutelle, C., Waddington, S. (eds) Prenatal Gene Therapy. Methods in Molecular Biology, vol 891. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-873-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-873-3_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-872-6

  • Online ISBN: 978-1-61779-873-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics