Skip to main content

Vector Systems for Prenatal Gene Therapy: Principles of Retrovirus Vector Design and Production

  • Protocol
  • First Online:
Prenatal Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 891))

Abstract

Vectors derived from the Retroviridae family have several attributes required for successful gene delivery. Retroviral vectors have an adequate payload size for the coding regions of most genes; they are safe to handle and simple to produce. These vectors can be manipulated to target different cell types with low immunogenicity and can permanently insert genetic information into the host cells’ genome. Retroviral vectors have been used in gene therapy clinical trials and successfully applied experimentally in vitro, in vivo, and in utero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suerth JD, Maetzig T, Galla M et al (2010) Self-inactivating alpharetroviral vectors with a split-packaging design. J Virol 84:6626–6635

    Article  PubMed  CAS  Google Scholar 

  2. Guntaka RV, Swamynathan SK (1998) Retroviral vectors for gene therapy. Indian J Exp Biol 36:539–545

    PubMed  CAS  Google Scholar 

  3. Palu G, Parolin C, Takeuchi Y, Pizzato M (2000) Progress with retroviral gene vectors. Rev Med Virol 10:185–202

    Article  PubMed  CAS  Google Scholar 

  4. Naldini L, Blomer U, Gage FH et al (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A 93:11382–11388

    Article  PubMed  CAS  Google Scholar 

  5. Russell DW, Miller AD (1996) Foamy virus vectors. J Virol 70:217–222

    PubMed  CAS  Google Scholar 

  6. Hacein-Bey-Abina S, Le DF, Carlier F, Bouneaud C et al (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193

    Article  PubMed  CAS  Google Scholar 

  7. Gaspar HB, Parsley KL, Howe S et al (2004) Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364:2181–2187

    Article  PubMed  CAS  Google Scholar 

  8. Aiuti A, Cattaneo F, Galimberti S et al (2009) Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 360:447–458

    Article  PubMed  CAS  Google Scholar 

  9. Ott MG, Schmidt M, Schwarzwaelder K et al (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12:401–409

    Article  PubMed  CAS  Google Scholar 

  10. Cartier N, Hacein-Bey-Abina S, Bartholomae CC et al (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–823

    Article  PubMed  CAS  Google Scholar 

  11. Reiser J, Harmison G, Kluepfel-Stahl S et al (1996) Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc Natl Acad Sci U S A 93:15266–15271

    Article  PubMed  CAS  Google Scholar 

  12. Miller AD, Rosman GJ (1989) Improved retroviral vectors for gene transfer and expression. Biotechniques 7(980–6):989

    Google Scholar 

  13. Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    PubMed  CAS  Google Scholar 

  14. Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  PubMed  CAS  Google Scholar 

  15. Follenzi A, Ailles LE, Bakovic S et al (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25:217–222

    Article  PubMed  CAS  Google Scholar 

  16. Zennou V, Petit C, Guetard D et al (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101:173–185

    Article  PubMed  CAS  Google Scholar 

  17. Demaison C, Parsley K, Brouns G et al (2002) High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of immunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 13:803–813

    Article  PubMed  CAS  Google Scholar 

  18. Zufferey R, Nagy D, Mandel RJ et al (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875

    Article  PubMed  CAS  Google Scholar 

  19. Schwickerath O, Brouns G, Thrasher A et al (2004) Enhancer-deleted retroviral vectors restore high levels of superoxide generation in a mouse model of CGD. J Gene Med 6:603–615

    Article  PubMed  CAS  Google Scholar 

  20. Dougherty JP, Temin HM (1986) High mutation rate of a spleen necrosis virus-based retrovirus vector. Mol Cell Biol 6:4387–4395

    PubMed  CAS  Google Scholar 

  21. Amendola M, Venneri MA, Biffi A et al (2005) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 23:108–116

    Article  PubMed  CAS  Google Scholar 

  22. Fux C, Langer D, Kelm JM (2004) New-generation multicistronic expression platform: pTRIDENT vectors containing size-optimized IRES elements enable homing endonuclease-based cistron swapping into lentiviral expression vectors. Biotechnol Bioeng 86:174–187

    Article  PubMed  CAS  Google Scholar 

  23. Pizzato M, Franchin E, Calvi P et al (1998) Production and characterization of a bicistronic Moloney-based retroviral vector expressing human interleukin 2 and herpes simplex virus thymidine kinase for gene therapy of cancer. Gene Ther 5:1003–1007

    Article  PubMed  CAS  Google Scholar 

  24. Chinnasamy D, Milsom MD, Shaffer J et al (2006) Multicistronic lentiviral vectors containing the FMDV 2A cleavage factor demonstrate robust expression of encoded genes at limiting MOI. Virol J 3:14

    Article  PubMed  Google Scholar 

  25. Chinnasamy N, Shaffer J, Chinnasamy D (2009) Production of multicistronic HIV-1 based lentiviral vectors. Methods Mol Biol 515:137–150

    Article  PubMed  CAS  Google Scholar 

  26. Zhang XY, La RV, Reiser J (2004) Transduction of bone-marrow-derived mesenchymal stem cells by using lentivirus vectors pseudotyped with modified RD114 envelope glycoproteins. J Virol 78:1219–1229

    Article  PubMed  CAS  Google Scholar 

  27. Donello JE, Loeb JE, Hope TJ (1998) Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J Virol 72:5085–5092

    PubMed  CAS  Google Scholar 

  28. Zavada J, Zazadova Z, Malir A, Kocent A (1972) VSV pseudotype produced in cell line derived from human mammary carcinoma. Nat New Biol 240:124–125

    PubMed  CAS  Google Scholar 

  29. Zavada J (1976) Viral pseudotypes and phenotypic mixing. Arch Virol 50:1–15

    Article  PubMed  CAS  Google Scholar 

  30. Battini JL, Heard JM, Danos O (1992) Receptor choice determinants in the envelope glycoproteins of amphotropic, xenotropic, and polytropic murine leukemia viruses. J Virol 66:1468–1475

    PubMed  CAS  Google Scholar 

  31. Rahim AA, Wong AM, Howe SJ et al (2009) Efficient gene delivery to the adult and fetal CNS using pseudotyped non-integrating lentiviral vectors. Gene Ther 16:509–520

    Article  PubMed  CAS  Google Scholar 

  32. Mazarakis ND, Azzouz M, Rohll JB et al (2001) Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 10:2109–2121

    Article  PubMed  CAS  Google Scholar 

  33. Russell SJ, Cosset FL (1999) Modifying the host range properties of retroviral vectors. J Gene Med 1:300–311

    Article  PubMed  CAS  Google Scholar 

  34. Morling FJ, Peng KW, Cosset FL, Russell SJ (1997) Masking of retroviral envelope functions by oligomerizing polypeptide adaptors. Virology 234:51–61

    Article  PubMed  CAS  Google Scholar 

  35. Cosset FL, Morling FJ, Takeuchi Y et al (1995) Retroviral retargeting by envelopes expressing an N-terminal binding domain. J Virol 69:6314–6322

    PubMed  CAS  Google Scholar 

  36. Valsesia-Wittmann S, Morling FJ, Nilson BH et al (1996) Improvement of retroviral retargeting by using amino acid spacers between an additional binding domain and the N terminus of Moloney murine leukemia virus SU. J Virol 70:2059–2064

    PubMed  CAS  Google Scholar 

  37. Kasahara N, Dozy AM, Kan YW (1994) Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science 266:1373–1376

    Article  PubMed  CAS  Google Scholar 

  38. Jeetendra E, Robison CS, Albritton LM, Whitt MA (2002) The membrane-proximal domain of vesicular stomatitis virus G protein functions as a membrane fusion potentiator and can induce hemifusion. J Virol 76:12300–12311

    Article  PubMed  CAS  Google Scholar 

  39. Zhang XY, Kutner RH, Bialkowska A et al (2010) Cell-specific targeting of lentiviral vectors mediated by fusion proteins derived from Sindbis virus, vesicular stomatitis virus, or avian sarcoma/leukosis virus. Retrovirology 7:3

    Article  PubMed  Google Scholar 

  40. Morizono K (2005) Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat Med 11:346–352

    Article  PubMed  CAS  Google Scholar 

  41. Pariente N, Mao SH, Morizono K, Chen IS (2008) Efficient targeted transduction of primary human endothelial cells with dual-targeted lentiviral vectors. J Gene Med 10:242–248

    Article  PubMed  CAS  Google Scholar 

  42. Buchholz CJ, Muhlebach MD, Cichutek K (2009) Lentiviral vectors with measles virus glycoproteins—dream team for gene transfer? Trends Biotechnol 27:259–265

    Article  PubMed  CAS  Google Scholar 

  43. Szecsi J, Drury R, Josserand V et al (2006) Targeted retroviral vectors displaying a cleavage site-engineered hemagglutinin (HA) through HA-protease interactions. Mol Ther 14:735–744

    Article  PubMed  CAS  Google Scholar 

  44. Hammarstedt M, Wallengren K, Pedersen KW et al (2000) Minimal exclusion of plasma membrane proteins during retroviral envelope formation. Proc Natl Acad Sci U S A 97:7527–7532

    Article  PubMed  CAS  Google Scholar 

  45. Chandrashekran A, Gordon MY, Casimir C (2004) Targeted retroviral transduction of c-kit  +  hematopoietic cells using novel ligand display technology. Blood 104:2697–2703

    Article  PubMed  CAS  Google Scholar 

  46. Thornhill SI, Schambach A, Howe SJ et al (2008) Self-inactivating gammaretroviral vectors for gene therapy of X-linked severe combined immunodeficiency. Mol Ther 16:590–598

    Article  PubMed  CAS  Google Scholar 

  47. Charrier S, Dupre L, Scaramuzza S et al (2007) Lentiviral vectors targeting WASp expression to hematopoietic cells, efficiently transduce and correct cells from WAS patients. Gene Ther 14:415–428

    Article  PubMed  CAS  Google Scholar 

  48. Ferrari G, Salvatori G, Rossi C et al (1995) A retroviral vector containing a muscle-specific enhancer drives gene expression only in differentiated muscle fibers. Hum Gene Ther 6:733–742

    Article  PubMed  CAS  Google Scholar 

  49. Vile RG, Hart IR (1993) In vitro and in vivo targeting of gene expression to melanoma cells. Cancer Res 53:962–967

    PubMed  CAS  Google Scholar 

  50. Vile RG, Hart IR (1994) Targeting of cytokine gene expression to malignant melanoma cells using tissue specific promoter sequences. Ann Oncol 5(Suppl 4):59–65

    PubMed  Google Scholar 

  51. Brown BD, Venneri MA, Zingale A et al (2006) Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 12:585–591

    Article  PubMed  CAS  Google Scholar 

  52. Cosset FL, Takeuchi Y, Battini JL et al (1995) High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 69:7430–7436

    PubMed  CAS  Google Scholar 

  53. Loew R, Meyer Y, Kuehlcke K et al (2010) A new PG13-based packaging cell line for stable production of clinical-grade self-inactivating gamma-retroviral vectors using targeted integration. Gene Ther 17:272–280

    Article  PubMed  CAS  Google Scholar 

  54. Kinsella TM, Nolan GP (1996) Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum Gene Ther 7:1405–1413

    Article  PubMed  CAS  Google Scholar 

  55. Rodrigues T, Alves A, Lopes A et al (2008) Removal of envelope protein-free retroviral vectors by anion-exchange chromatography to improve product quality. J Sep Sci 31:3509–3518

    Article  PubMed  CAS  Google Scholar 

  56. Landazuri N, Le Doux JM (2006) Complexation with chondroitin sulfate C and Polybrene rapidly purifies retrovirus from inhibitors of transduction and substantially enhances gene transfer. Biotechnol Bioeng 93:146–158

    Article  PubMed  CAS  Google Scholar 

  57. Sastry L, Johnson T, Hobson MJ et al (2002) Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther 9:1155–1162

    Article  PubMed  CAS  Google Scholar 

  58. Fehse B, Kustikova OS, Bubenheim M, Baum C (2004) Pois(s)on–it’s a question of dose. Gene Ther 11:879–881

    Article  PubMed  CAS  Google Scholar 

  59. Lizee G, Aerts JL, Gonzales MI et al (2003) Real-time quantitative reverse transcriptase-polymerase chain reaction as a method for determining lentiviral vector titers and measuring transgene expression. Hum Gene Ther 14:497–507

    Article  PubMed  CAS  Google Scholar 

  60. Delenda C (2004) Lentiviral vectors: optimization of packaging, transduction and gene expression. J Gene Med 6(Suppl 1):S125–S138

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Howe PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC.

About this protocol

Cite this protocol

Howe, S.J., Chandrashekran, A. (2012). Vector Systems for Prenatal Gene Therapy: Principles of Retrovirus Vector Design and Production. In: Coutelle, C., Waddington, S. (eds) Prenatal Gene Therapy. Methods in Molecular Biology, vol 891. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-873-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-873-3_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-872-6

  • Online ISBN: 978-1-61779-873-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics