Skip to main content

Vector Systems for Prenatal Gene Therapy: Choosing Vectors for Different Applications

  • Protocol
  • First Online:
Book cover Prenatal Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 891))

Abstract

This chapter gives a comparative review of the different vector systems applied to date in prenatal gene therapy experiments highlighting the need for versatility and choice for application in accordance with the actual aim of the study. It reviews the key characteristics of the four main gene therapy vector systems and gives examples for their successful application in prenatal gene therapy experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rahman SH, Maeder ML, Joung JK, Cathomen T (2011) Zinc-finger nucleases for somatic gene therapy: the next frontier. Hum Gene Ther 22:925–933

    Article  PubMed  CAS  Google Scholar 

  2. Galetto R, Duchateau P, Paques F (2009) Targeted approaches for gene therapy and the emergence of engineered meganucleases. Expert Opin Biol Ther 9:1289–1303

    Article  PubMed  CAS  Google Scholar 

  3. Li T, Huang S, Jiang WZ, et al (2010) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372

    Google Scholar 

  4. Urnov FD, Miller JC, Lee YL et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651

    Article  PubMed  CAS  Google Scholar 

  5. Li H, Haurigot V, Doyon Y, et al (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475:217–221

    Google Scholar 

  6. Toscano MG, Romero Z, Munoz P et al (2011) Physiological and tissue-specific vectors for treatment of inherited diseases. Gene Ther 18:117–127

    Article  PubMed  CAS  Google Scholar 

  7. Gonzaga S, Henriques-Coelho T, Davey M et al (2008) Cystic adenomatoid malformations are induced by localized FGF10 overexpression in fetal rat lung. Am J Respir Cell Mol Biol 39:346–355

    Article  PubMed  CAS  Google Scholar 

  8. Krieg AM (1999) Direct immunologic activities of CpG DNA and implications for gene therapy. J Gene Med 1:56–63

    Article  PubMed  CAS  Google Scholar 

  9. Yew NS, Zhao H, Przybylska M et al (2002) CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol Ther 5:731–738

    Article  PubMed  CAS  Google Scholar 

  10. Mason CA, Bigras JL, O’Blenes SB et al (1999) Gene transfer in utero biologically engineers a patent ductus arteriosus in lambs by arresting fibronectin-dependent neointimal formation. Nat Med 5:176–182

    Article  PubMed  CAS  Google Scholar 

  11. Saada J, Oudrhiri N, Bonnard A et al (2010) Combining keratinocyte growth factor transfection into the airways and tracheal occlusion in a fetal sheep model of congenital diaphragmatic hernia. J Gene Med 12(5):413–422

    Article  PubMed  CAS  Google Scholar 

  12. Darquet A, Cameron B, Wils P et al (1997) A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther 4:1341–1349

    Article  PubMed  CAS  Google Scholar 

  13. Bigger BW, Tolmachov O, Collombet JM et al (2001) An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J Biol Chem 276:23018–23027

    Article  PubMed  CAS  Google Scholar 

  14. Chen ZY, He CY, Ehrhardt A, Kay MA (2003) Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 8:495–500

    Article  PubMed  CAS  Google Scholar 

  15. Argyros O, Wong SP, Niceta M et al (2008) Persistent episomal transgene expression in liver following delivery of a scaffold/matrix attachment region containing non-viral vector. Gene Ther 15:1593–1605

    Article  PubMed  CAS  Google Scholar 

  16. Argyros O, Wong SP, Fedonidis C et al (2011) Development of S/MAR minicircles for enhanced and persistent transgene expression in the mouse liver. J Mol Med 89:515–529

    Article  PubMed  CAS  Google Scholar 

  17. Hagedorn C, Wong SP, Harbottle R, Lipps HJ (2011) Scaffold/Matrix attached region-based nonviral episomal vectors. Hum Gene Ther 22:915–923

    Article  PubMed  CAS  Google Scholar 

  18. Kootstra NA, Verma IM (2003) Gene therapy with viral vectors. Annu Rev Pharmacol Toxicol 43:413–439

    Article  PubMed  CAS  Google Scholar 

  19. Strauss SE (1984) Adenovirus infections in humans. In: Ginsberg HS (ed) Adenoviruses. Plenum Press, New York, London, pp 451–496

    Chapter  Google Scholar 

  20. Horowitz MS (1990) Adenoviruses NO. In: Fields BN, Knipe DM (eds) Virology. Raven Press, Ltd, New York, pp 1723–1740

    Google Scholar 

  21. Yang Y, Li Q, Ertl HCJ, Wilson JM (1995) Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 69:2004–2015

    PubMed  CAS  Google Scholar 

  22. Danthinne X, Imperiale MJ (2000) Production of first generation adenovirus vectors: a review. Gene Ther 7:1707–1714

    Article  PubMed  CAS  Google Scholar 

  23. Kochanek S (1999) High-capacity adenoviral vectors for gene transfer and somatic gene therapy. Hum Gene Ther 10:2451–2459

    Article  PubMed  CAS  Google Scholar 

  24. Kochanek S, Clemens PR, Mitani K et al (1996) A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and ß-galactosidase. Proc Natl Acad Sci U S A 93:5731–5752

    Article  PubMed  CAS  Google Scholar 

  25. Schiedner G, Morral N, Parks RJ et al (1998) Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet 18:180–183

    Article  PubMed  CAS  Google Scholar 

  26. Kreppel F, Biermann V, Kochanek S, Schiedner G (2002) A DNA-based method to assay total and infectious particle contents and helper virus contamination in high-capacity adenoviral vector preparations. Hum Gene Ther 13:1151–1156

    Article  PubMed  CAS  Google Scholar 

  27. Waddington S, Buckley SMK, David AL et al (2007) Fetal gene transfer. Curr Opin Mol Ther 9:432–438

    PubMed  CAS  Google Scholar 

  28. Katz AB, Keswani SG, Habli M et al (2009) Placental gene transfer: transgene screening in mice for trophic effects on the placenta. Am J Obstet Gynecol 201(499):e491–e498

    Google Scholar 

  29. Laurema A, Vanamo K, Heikkila A et al (2004) Fetal membranes act as a barrier for adenoviruses: gene transfer into exocoelomic cavity of rat fetuses does not affect cells in the fetus. Am J Obstet Gynecol 190:264–267

    Article  PubMed  CAS  Google Scholar 

  30. Larson J, Morrow SL, Happel L et al (1997) Reversal of cystic fibrosis phenotype in mice by gene therapy in utero. Lancet 349:619–620

    Article  PubMed  CAS  Google Scholar 

  31. Buckley SM, Waddington SN, Jezzard S et al (2008) Intra-amniotic delivery of CFTR-expressing adenovirus does not reverse cystic fibrosis phenotype in inbred CFTR-knockout mice. Mol Ther 16:819–824

    Article  PubMed  CAS  Google Scholar 

  32. Davies LA, Varathalingam A, Painter H et al (2008) Adenovirus-mediated in utero expression of CFTR does not improve survival of CFTR knockout mice. Mol Ther 16:812–818

    Article  PubMed  CAS  Google Scholar 

  33. Bilbao R, Reay DP, Wu E et al (2005) (2005) Comparison of high-capacity and first-generation adenoviral vector gene delivery to murine muscle in utero. Gene Ther 12:39–47

    Article  PubMed  CAS  Google Scholar 

  34. Roberts DM, Nanda A, Havenga MJ et al (2006) Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature 441:239–243

    Article  PubMed  CAS  Google Scholar 

  35. Fang B, Eisensmith RC, Wang H et al (1995) Gene therapy for Hemophilia B: host immunosuppression prolongs the therapeutic effect of adenovirus-mediated Factor IX expression. Hum Gene Ther 6:1039–1044

    Article  PubMed  CAS  Google Scholar 

  36. Zennou V, Petit C, Guetard D et al (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101:173–185

    Article  PubMed  CAS  Google Scholar 

  37. Mitchell RS, Beitzel BF, Schroder AR et al (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2:E234

    Article  PubMed  Google Scholar 

  38. Bartosch B, Cosset FL (2004) Strategies for retargeted gene delivery using vectors derived from lentiviruses NO. Curr Gene Ther 4:427–443

    PubMed  CAS  Google Scholar 

  39. Baum C, Kustikova O, Modlich U et al (2006) Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 17:253–263

    Article  PubMed  CAS  Google Scholar 

  40. Pitt BR, Schwarz MA, Pilewski JM et al (1995) Retrovirus-mediated gene transfer in lungs of living fetal sheep. Gene Ther 2:344–350

    PubMed  CAS  Google Scholar 

  41. Douar AM, Adebakin S, Themis M et al (1997) Foetal gene delivery in mice by intra-amniotic administration of retroviral producer cells and adenovirus. Gene Ther 4:883–890

    Article  PubMed  CAS  Google Scholar 

  42. Seppen J, van der Rijt R, Looije N et al (2003) Long-term correction of bilirubin UDP glucuronyltransferase deficiency in rats by in utero lentiviral gene transfer. Mol Ther 8:593–599

    Article  PubMed  CAS  Google Scholar 

  43. Niiya M, Endo M, Shang D et al (2008) Correction of ADAMTS13 Deficiency by In Utero Gene Transfer of Lentiviral Vector encoding ADAMTS13 Genes, Mol Ther 17:34–41

    Article  PubMed  CAS  Google Scholar 

  44. Waddington S, Nivsarkar M, Mistry A et al (2004) Permanent phenotypic correction of Haemophilia B in immunocompetent mice by prenatal gene therapy. Blood 104:2714–2721

    Article  PubMed  CAS  Google Scholar 

  45. Yu ZY, McKay K, van Asperen P et al (2007) Lentivirus vector-mediated gene transfer to the developing bronchiolar airway epithelium in the fetal lamb. J Gene Med 9:429–439

    Article  PubMed  CAS  Google Scholar 

  46. Sinn PL, Penisten AK, Burnight ER et al (2005) Gene transfer to respiratory epithelia with lentivirus pseudotyped with Jaagsiekte sheep retrovirus envelope glycoprotein. Hum Gene Ther 16:479–488

    Article  PubMed  CAS  Google Scholar 

  47. Themis M, Waddington SN, Schmidt M et al (2005) Oncogenesis following delivery of a non-primate lentiviral gene therapy vector to fetal mice. Mol Ther Mol Ther 12:763–771

    CAS  Google Scholar 

  48. Buning H, Perabo L, Coutelle O et al (2008) Recent developments in adeno-associated virus vector technology. J Gene Med 10:717–733

    Article  PubMed  Google Scholar 

  49. Douar A-M, Themis M, Coutelle C (1996) Fetal somatic gene therapy. Hum Mol Reprod 2:633–641

    Article  CAS  Google Scholar 

  50. Manno CS, Pierce GF, Arruda VR et al (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nature 12:342–347

    Article  CAS  Google Scholar 

  51. Mingozzi F, Maus MV, Hui DJ et al (2007) CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med 13:419–422

    Article  PubMed  CAS  Google Scholar 

  52. Nathwani AC, Gray JT, Ng CY et al (2006) Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 107:2653–2661

    Article  PubMed  CAS  Google Scholar 

  53. Davidoff AM, Gray JT, Ng CY et al (2005) Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5, and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Mol Ther 11:875–888

    Article  PubMed  CAS  Google Scholar 

  54. Cecchini S, Virag T, Kotin RM (2011) Reproducible high yields of recombinant adeno-associated virus produced using invertebrate cells in 0.02- to 200-liter cultures. Hum Gene Ther 22:1021–1030

    Article  PubMed  CAS  Google Scholar 

  55. Mueller C, Flotte TR (2008) Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther 15:858–863

    Article  PubMed  CAS  Google Scholar 

  56. Mah C, Sarkar R, Zolotukhin I et al (2003) Dual vectors expressing murine factor VIII result in sustained correction of hemophilia A mice. Hum Gene Ther 14:143–152

    Article  PubMed  CAS  Google Scholar 

  57. Lu H, Chen L, Wang J, Huack B et al (2008) Complete correction of hemophilia A with adeno-associated viral vectors containing a full-size expression cassette. Hum Gene Ther 19:648–654

    Article  PubMed  CAS  Google Scholar 

  58. Allocca M, Doria M, Petrillo M et al (2008) Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 118:1955–1964

    Article  PubMed  CAS  Google Scholar 

  59. Hirsch ML, Agbandje-McKenna M, Samulski RJ (2010) Little vector, big gene transduction: fragmented genome reassembly of adeno-associated virus. Mol Ther 18(1):6–8

    Article  PubMed  CAS  Google Scholar 

  60. Rucker M, Fraites TJ Jr, Porvasnik SL et al (2004) Rescue of enzyme deficiency in embryonic diaphragm in a mouse model of metabolic myopathy: Pompe disease. Development 131:3007–3019

    Article  PubMed  CAS  Google Scholar 

  61. Dejneka NS, Surace EM, Aleman TS et al (2004) In utero gene therapy rescues vision in a murine model of congenital blindness. Mol Ther 9:182–188

    Article  PubMed  CAS  Google Scholar 

  62. Karolewski BA, Wolfe JH (2006) Genetic correction of the fetal brain increases the lifespan of mice with the severe multisystemic disease mucopolysaccharidosis type VII. Mol Ther 14:14–24

    Article  PubMed  CAS  Google Scholar 

  63. Koppanati BM, Li J, Reay DP et al (2010) Improvement of the mdx mouse dystrophic ­phenotype by systemic in utero AAV8 delivery of a minidystrophin gene. Gene Ther 17:1355–1362

    Article  PubMed  CAS  Google Scholar 

  64. Sabatino DE, Mackenzie TC, Peranteau W et al (2007) Persistent expression of hF.IX after tolerance induction by in utero or neonatal administration of AAV-1-F.IX in hemophilia B mice. Mol Ther 15:1677–1685

    Article  PubMed  CAS  Google Scholar 

  65. Koppanati BM, Li J, Xiao X, Clemens PR (2009) Systemic delivery of AAV8 in utero results in gene expression in diaphragm and limb muscle: treatment implications for muscle disorders. Gene Ther 16:1130–1137

    Article  PubMed  CAS  Google Scholar 

  66. Tarantal AF, Lee CC (2010) Long-term luciferase expression monitored by bioluminescence imaging after adeno-associated virus-mediated fetal gene delivery in rhesus monkeys (Macaca mulatta). Hum Gene Ther 21:143–148

    Article  PubMed  CAS  Google Scholar 

  67. David AL, Peebles DM, Gregory L et al (2006) Clinically applicable procedure for gene delivery to fetal gut by ultrasound-guided gastric injection: toward prenatal prevention of early-onset intestinal diseases. Hum Gene Ther 17:767–779

    Article  PubMed  CAS  Google Scholar 

  68. Mattar CN, Nathwani AC, Waddington SN et al (2011) Stable human FIX expression after 0.9G intrauterine gene transfer of self-complementary adeno-associated viral vector 5 and 8 in macaques, Mol Ther 19:1950–1960

    Google Scholar 

  69. Rahim AA, Wong AM, Hoefer K, et al (2011) Intravenous administration of AAV2/9 to the fetal and neonatal mouse leads to differential targeting of CNS cell types and extensive transduction of the nervous system. FASEB J 25:3505–3518

    Google Scholar 

  70. Mattar CN, Waddington SN, Biswas A et al (2012) Systemic delivery of scAAV9 in fetal macaques facilitates neuronal transduction of the scAAV9 in fetal macaques facilitates neuronal transduction of the central and peripheral nervous systems, Gene Ther. In Press

    Google Scholar 

  71. Donsante A, Miller DG, Li Y et al (2007) AAV vector integration sites in mouse hepatocellular carcinoma. Science 317:477

    Article  PubMed  CAS  Google Scholar 

  72. Donsante A, Vogler C, Muzyczka N et al (2001) Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors. Gene Ther 8:1343–1346

    Article  PubMed  CAS  Google Scholar 

  73. Russell DW (2007) AAV vectors, insertional mutagenesis, and cancer. Mol Ther 15:1740–1743

    Article  PubMed  CAS  Google Scholar 

  74. Kay MA (2007) AAV vectors and tumorigenicity. Nat Biotechnol 25:1111–1113

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Coutelle MD, DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC.

About this protocol

Cite this protocol

Coutelle, C., Waddington, S.N. (2012). Vector Systems for Prenatal Gene Therapy: Choosing Vectors for Different Applications. In: Coutelle, C., Waddington, S. (eds) Prenatal Gene Therapy. Methods in Molecular Biology, vol 891. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-873-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-873-3_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-872-6

  • Online ISBN: 978-1-61779-873-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics