Skip to main content

Animal Models for Prenatal Gene Therapy: The Nonhuman Primate Model

  • Protocol
  • First Online:
Book cover Prenatal Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 891))

Abstract

Intrauterine gene therapy (IUGT) potentially enables the treatment and possible cure of monogenic ­diseases that cause severe fetal damage. The main benefits of this approach will be the ability to correct the disorder before the onset of irreversible pathology and inducing central immune tolerance to the vector and transgene if treatment is instituted in early gestation. Cure has been demonstrated in small animal models, but because of the significant differences in immune ontogeny and the much shorter gestation compared to humans, it is unlikely that questions of long-term efficacy and safety will be adequately addressed in rodents. The nonhuman primate (NHP) allows investigation of key issues, in particular, the different outcomes in early and late-gestation IUGT associated with different stages of immune maturity, longevity of transgene expression, and delayed-onset adverse events in treated offspring and mothers including insertional mutagenesis. Here, we describe a model based on the Macaca fascicularis using ultrasound and fetoscopic approaches to systemic vector delivery and the processes involved in vector administration and longitudinal analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coutelle C, Themis M, Waddington S et al (2003) The hopes and fears of in utero gene therapy for genetic disease—a review. Placenta 24:S114–S121

    Article  PubMed  Google Scholar 

  2. Waddington SN, Kramer MG, Hernandez-Alcoceba R et al (2005) In utero gene therapy: current challenges and perspectives. Mol Ther 11:661–676

    Article  PubMed  CAS  Google Scholar 

  3. Waddington S, Buckley S, David A et al (2007) Fetal gene transfer. Curr Opin Mol Ther 9:432–438

    PubMed  CAS  Google Scholar 

  4. Surbek D, Schoeberlein A, Wagner A (2008) Perinatal stem-cell and gene therapy for hemoglobinopathies. Semin Fetal Neonatal Med 13(4):282–290

    Google Scholar 

  5. Haynes B, Scearce R, Lobach D et al (1984) Phenotypic characterization and ontogeny of mesodermal-derived and endocrine epithelial components of the human thymic microenvironment. J Exp Med 159:1149–1168

    Article  PubMed  CAS  Google Scholar 

  6. Billingham R, Brent L, Medawar P (2003) ‘Actively Acquired Tolerance’ of foreign cells. Transplantation 76:1409–1412

    Article  PubMed  CAS  Google Scholar 

  7. Takahama Y (2006) Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 6:127–135

    Article  PubMed  CAS  Google Scholar 

  8. Guillot PV, Gotherstrom C, Chan J et al (2007) Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells (Dayton Ohio) 25:646–654

    Article  CAS  Google Scholar 

  9. Benirschke K, Kaufmann P (eds) (2003) Pathology of the human placenta. Springer, New York

    Google Scholar 

  10. Dejneka NS, Surace EM, Aleman TS et al (2004) In utero gene therapy rescues vision in a murine model of congenital blindness. Mol Ther 9:182–188

    Article  PubMed  CAS  Google Scholar 

  11. Williams M, Coleman J, Haire S et al (2006) Lentiviral expression of retinal guanylate cyclase-1 (RetGC1) restores vision in an avian model of childhood blindness. PLoS Med 3:e201

    Article  PubMed  Google Scholar 

  12. Seppen J, van der Rijt R, Looije N et al (2003) Long-term correction of bilirubin UDP glucuronyltransferase deficiency in rats by in utero lentiviral gene transfer. Mol Ther 8:593–599

    Article  PubMed  CAS  Google Scholar 

  13. Waddington SN, Nivsarkar MS, Mistry AR et al (2004) Permanent phenotypic correction of hemophilia B in immunocompetent mice by prenatal gene therapy. Blood 104:2714–2721

    Article  PubMed  CAS  Google Scholar 

  14. Karolewski BA, Wolfe JH (2006) Genetic correction of the fetal brain increases the lifespan of mice with the severe multisystemic disease mucopolysaccharidosis type VII. Mol Ther 14:14–24

    Article  PubMed  CAS  Google Scholar 

  15. Buckley SMK, Waddington SN, Jezzard S et al (2008) Intra-amniotic delivery of CFTR-expressing adenovirus does not reverse cystic fibrosis phenotype in inbred CFTR-knockout mice. Mol Ther 16:819–824

    Article  PubMed  CAS  Google Scholar 

  16. Davies L, Varathalingam A, Painter H et al (2008) Adenovirus-mediated in utero expression of CFTR does not improve survival of CFTR knockout mice. Mol Ther 16:812–818

    Article  PubMed  CAS  Google Scholar 

  17. Larson J, Morrow S, Happel L et al (1997) Reversal of cystic fibrosis phenotype in mice by gene therapy in utero. Lancet 349:619–620

    Article  PubMed  CAS  Google Scholar 

  18. Reay D, Bilbao R, Koppanati B et al (2008) Full-length dystrophin gene transfer to the mdx mouse in utero. Gene Ther 15:531–536

    Article  PubMed  CAS  Google Scholar 

  19. Koppanati BM, Li J, Reay DP et al (2010) Improvement of the mdx mouse dystrophic phenotype by systemic in utero AAV8 delivery of a minidystrophin gene. Gene Ther 17(11):1355–1362

    Google Scholar 

  20. Georgiadesa P, Ferguson-Smith A, Burton G (2002) Comparative developmental anatomy of the murine and human definitive placentae. Placenta 23:3–19

    Article  Google Scholar 

  21. Harkness J, Wagner J (1995) The biology and medicine of rabbits and rodents, 4th edn. Williams & Wilkins, Philadelphia

    Google Scholar 

  22. Williams DA (2009) Recombinant DNA Advisory Committee updates recommendations on gene transfer for X-linked severe combined immunodeficiency. Mol Ther 17:751–752

    Article  PubMed  CAS  Google Scholar 

  23. Sabatino DE, Mackenzie TC, Peranteau W et al (2007) Persistent expression of hF.IX after tolerance induction by in utero or neonatal administration of AAV-1-F.IX in hemophilia B mice. Mol Ther 15:1677–1685

    Article  PubMed  CAS  Google Scholar 

  24. Waddington SN, Buckley SMK, Nivsarkar M et al (2003) In utero gene transfer of human factor IX to fetal mice can induce postnatal tolerance of the exogenous clotting factor. Blood 101:1359–1366

    Article  PubMed  CAS  Google Scholar 

  25. Waddington SN, Mitrophanous KA, Ellard F et al (2003) Long-term transgene expression by administration of a lentivirus-based vector to the fetal circulation of immuno-competent mice. Gene Ther 10:1234–1240

    Article  PubMed  CAS  Google Scholar 

  26. Tran ND, Porada CD, Almeida-Porada Ga et al (2001) Induction of stable prenatal tolerance to b-galactosidase by in utero gene transfer into preimmune sheep fetuses. Blood 97: 3417–3423

    Article  PubMed  CAS  Google Scholar 

  27. Kafri T, Morgan D, Krahl T et al (1998) Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy. Proc Natl Acad Sci U S A 95:11377–11382

    Article  PubMed  CAS  Google Scholar 

  28. van Ginkel F, McGhee J, Liu C et al (1997) Adenoviral gene delivery elicits distinct pulmonary-associated T helper cell responses to the vector and to its transgene. J Immunol 159:685–693

    PubMed  Google Scholar 

  29. Liberatore C, Capanni M, Albi N et al (1999) Natural killer cell-mediated lysis of autologous cells modified by gene therapy. J Exp Med 189:1855–1862

    Article  PubMed  CAS  Google Scholar 

  30. Manno CS, Pierce GF, Arruda VR et al (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12:342–347

    Article  PubMed  CAS  Google Scholar 

  31. Holladay SD, Smialowicz RJ (2000) Development of the murine and human immune system: differential effects of immunotoxicants depend on time of exposure. Environ Health Perspect 108(Suppl 3):463–473

    PubMed  CAS  Google Scholar 

  32. Stites D, Carr M, Fundenberg H (1974) Ontogeny of cellular immunity in the human fetus. Development of responses to phytohaemmagglutinin and to allogeneic cells. Cell Immunol 11:257–271

    Article  PubMed  CAS  Google Scholar 

  33. Mumford D, Sung J, Wallis J et al (1978) The lymphocyte transformation response of fetal hemolymphatic tissue to mitogens and antigens. Pediatr Res 12:171–175

    Article  PubMed  CAS  Google Scholar 

  34. Ohama K, Kaji T (1974) Mixed culture of fetal and adult lymphocytes. Am J Obstet Gynecol 119:552–560

    Google Scholar 

  35. Toivanen P, Uksila J, Leino A et al (1981) Development of mitogen responding T cells and natural killer cells in the human fetus. Immunol Rev 57:89–105

    Article  PubMed  CAS  Google Scholar 

  36. Mosier D (1977) Ontogeny of T cell function in the neonatal mouse. In: Cooper M, Dayton D (eds) Development of host defenses. Raven Press, New York

    Google Scholar 

  37. Verlarde A, Cooper M (1984) An immunofluorescence analysis of the ontogeny of myeloid, T, and B lineage cells in mouse hemopoietic tissues. J Immunol 133:672–677

    Google Scholar 

  38. Tyan ML, Herzenberg LA (1968) Studies on the ontogeny of the mouse immune system: II. Immunoglobulin-producing cells. J Immunol 101:446–450

    PubMed  CAS  Google Scholar 

  39. Santoni A, Riccardi C, Barlozzari T et al (1982) Natural suppressor cells for murine NK activity. In: Herberman R (ed) NK cells and other natural effector cells. Academic Press, New York, p 443

    Google Scholar 

  40. Mestas J, Hughes CCW (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738

    PubMed  CAS  Google Scholar 

  41. Christensen G, Minamisawa S, Gruber PJ et al (2000) High-efficiency, long-term cardiac expression of foreign genes in living mouse embryos and neonates. Circulation 101: 178–184

    Article  PubMed  CAS  Google Scholar 

  42. Lipshutz GS, Gruber CA, Cao Y-a et al (2001) In utero delivery of adeno-associated viral vectors: intraperitoneal gene transfer produces long-term expression. Mol Ther 3:284–292

    Article  PubMed  CAS  Google Scholar 

  43. Lipshutz GS, Flebbe-Rehwaldt L, Gaensler KM (1999) Adenovirus-mediated gene transfer in the midgestation fetal mouse. J Surg Res 84:150–156

    Article  PubMed  CAS  Google Scholar 

  44. Gregory LG, Waddington SN, Holder MV et al (2004) Highly efficient EIAV-mediated in utero gene transfer and expression in the major muscle groups affected by Duchenne muscular dystrophy. Gene Ther 11:1117–1125

    Article  PubMed  CAS  Google Scholar 

  45. Waddington SN, Buckley SM, Bernloehr C et al (2004) Reduced toxicity of F-deficient Sendai virus vector in the mouse fetus. Gene Ther 11:599–608

    Article  PubMed  CAS  Google Scholar 

  46. Endo M, Henriques-Coelho T, Zoltick PW et al (2010) The developmental stage determines the distribution and duration of gene expression after early intra-amniotic gene transfer using lentiviral vectors. Gene Ther 17:61–71

    Article  PubMed  CAS  Google Scholar 

  47. Magness CL, Fellin PC, Thomas MJ et al (2005) Analysis of the Macaca mulatta transcriptome and the sequence divergence between macaca and human. Genome Biol 6:R60

    Article  PubMed  Google Scholar 

  48. Hendrie T, Peterson P, Short J et al (1996) Frequency of prenatal loss in a macaque breeding colony. Am J Primatol 40:41–53

    Article  Google Scholar 

  49. Enders A, Lantz K, Peterson P et al (1997) Symposium: reproduction in baboons. From blastocyst to placenta: the morphology of implantation in the baboon. Hum Reprod Update 3:561–573

    Article  PubMed  CAS  Google Scholar 

  50. Blankenship TN, Enders AC, King BF (1993) Trophoblastic invasion and modification of uterine veins during placental development in macaques. Cell Tissue Res 274:135–144

    Article  PubMed  CAS  Google Scholar 

  51. Blankenship TN, Enders AC, King BF (1993) Trophoblastic invasion and the development of uteroplacental arteries in the macaque: immunohistochemical localization of cytokeratins, desmin, type IV collagen, laminin, and fibronectin. Cell Tissue Res 272:227–236

    Article  PubMed  CAS  Google Scholar 

  52. Musicki B, Pepe G, Albrecht E (2003) Functional differentiation of the placental syncytiotrophoblast: effect of estrogen on chorionic somatomammotropin expression during early primate pregnancy. J Clin Endocrinol Metab 88:4316–4323

    Article  PubMed  CAS  Google Scholar 

  53. Makori N, Rodriguez C, Cukierski M et al (1996) Development of the brain in staged embryos of the long-tailed monkey (Macaca fascicularis). Primates 37:351–361

    Article  Google Scholar 

  54. Hendrickx A, Peterson P (1997) Symposium: reproduction in baboons. Perspectives on the use of the baboon in embryology and teratology research. Hum Reprod Update 3:575–592

    Article  PubMed  CAS  Google Scholar 

  55. Hendrickx A, Makori N, Peterson P (2002) The nonhuman primate as a model of developmental immunotoxicity. Hum Exp Toxicol 21:537–542

    Article  PubMed  CAS  Google Scholar 

  56. Plopper C, Alley J, Weir A (1986) Differentiation of tracheal epithelium during fetal maturation in the rhesus monkey Macaca mulatta. Am J Anat 175:59–71

    Article  PubMed  CAS  Google Scholar 

  57. Chan J, Kumar S, Fisk NM (2008) First trimester embryo-fetoscopic and ultrasound-guided fetal blood sampling for ex vivo viral transduction of cultured human fetal mesenchymal stem cells. Hum Reprod 23:2427–2437

    Article  PubMed  Google Scholar 

  58. Garrett D, Larson J, Dunn D et al (2003) In utero recombinant adeno-associated virus gene transfer in mice, rats, and primates. BMC Biotechnol 3:16–23

    Article  PubMed  Google Scholar 

  59. Tarantal A, Lee C (2010) Long-term luciferase expression monitored by bioluminescence imaging after adeno-associated virus-mediated fetal gene delivery in rhesus monkeys (Macaca mulatta). Hum Gene Ther 21:1–6

    Article  Google Scholar 

  60. Tarantal AF, McDonald RJ, Jimenez DF et al (2005) Intrapulmonary and intramyocardial gene transfer in rhesus monkeys (Macaca mulatta): safety and efficiency of HIV-1-derived lentiviral vectors for fetal gene delivery. Mol Ther 12:87–98

    Article  PubMed  CAS  Google Scholar 

  61. Tarantal AF, Lee CI, Ekert JE et al (2001) Lentiviral vector gene transfer into fetal rhesus monkeys (Macaca mulatta): lung-targeting approaches. Mol Ther 4:614–621

    Article  PubMed  CAS  Google Scholar 

  62. Tarantal AF, O’Rourke JP, Case SS et al (2001) Rhesus monkey model for fetal gene transfer: studies with retroviral-based vector systems. Mol Ther 3:128–138

    Article  PubMed  CAS  Google Scholar 

  63. Tarantal AF, Lee CC, Jimenez DF et al (2006) Fetal gene transfer using lentiviral vectors: in vivo detection of gene expression by microPET and optical imaging in fetal and infant monkeys. Hum Gene Ther 17:1254–1261

    Article  PubMed  CAS  Google Scholar 

  64. Lai L, Davison BB, Veazey RS et al (2002) A preliminary evaluation of recombinant adeno-associated virus biodistribution in rhesus monkeys after intrahepatic inoculation in utero. Hum Gene Ther 13:2027–2039

    Article  PubMed  CAS  Google Scholar 

  65. Mattar CN, Nathwani AC, Waddington SN et al (2011) Stable human FIX expression after 0.9G intrauterine gene transfer of self-complementary adeno-associated viral vector 5 and 8 in macaques. Mol Ther 19(11):1950–1960

    Google Scholar 

  66. Bishop CV, Sparman ML, Stanley JE et al (2009) Evaluation of antral follicle growth in the macaque ovary during the menstrual cycle and controlled ovarian stimulation by high-resolution ultrasonography. Am J Primatol 71:384–392

    Article  PubMed  Google Scholar 

  67. Adams M, Kaplan J, Manuck S et al (1990) Inhibition of coronary artery atherosclerosis by 17-beta estradiol in ovariectomized monkeys. Lack of an effect of added progesterone. Arteriosclerosis 10:1051–1057

    Article  PubMed  CAS  Google Scholar 

  68. Gallagher M, Rapp PR (1997) The use of animal models to study the effects of aging on cognition. Annu Rev Psychol 48:339

    Article  PubMed  CAS  Google Scholar 

  69. Chan AW, Chong KY, Martinovich C et al (2001) Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science (New York, NY) 291:309–312

    Article  CAS  Google Scholar 

  70. Yang SH, Cheng PH, Banta H et al (2008) Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453:921–924

    Article  PubMed  CAS  Google Scholar 

  71. Tarantal A, Hendrickx A (1988) Prenatal growth in the cynomolgus and rhesus macaque (Macaca fascicularis and Macaca mulatta): a comparison by ultrasonography. Am J Primatol 15:309–323

    Article  Google Scholar 

  72. Blakely G, Beamer T, Dukelow W (1981) Characteristics of the menstrual cycle in nonhuman primates. IV. Timed mating in Macaca nemestrina. Lab Anim 15:351–353

    Article  Google Scholar 

  73. Bonadio C (2000) Macaca fascicularis (On-line). Animal Diversity Web

    Google Scholar 

  74. Henderson-Smart DJ, Steer PA (2010) Caffeine versus theophylline for apnea in preterm infants. Cochrane Database Syst Rev (1):CD000273

    Google Scholar 

  75. Schmidt B, Roberts RS, Davis P et al (2006) Caffeine therapy for apnea of prematurity. N Engl J Med 354:2112–2121

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry K. Y. Chan MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC.

About this protocol

Cite this protocol

Mattar, C.N., Biswas, A., Choolani, M., Chan, J.K.Y. (2012). Animal Models for Prenatal Gene Therapy: The Nonhuman Primate Model. In: Coutelle, C., Waddington, S. (eds) Prenatal Gene Therapy. Methods in Molecular Biology, vol 891. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-873-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-873-3_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-872-6

  • Online ISBN: 978-1-61779-873-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics