Skip to main content

Two Methods to Easily Obtain Nucleotide Sequences from AFLP Loci of Interest

  • Protocol
  • First Online:
Data Production and Analysis in Population Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 888))

Abstract

Genome scans based on anonymous Amplified Fragment Length Polymorphism (AFLP) markers scattered throughout the genome are becoming an increasingly popular approach to study the genetic basis of adaptation and speciation in natural populations. A shortcoming of this approach is that despite its efficiency to detect signatures of selection, it can hardly help pinpoint the specific genomic region(s), gene(s), or mutation(s) targeted by selection. Here, we present two methods to be undertaken after performing an AFLP-based genome scan to easily obtain the sequences of AFLP loci detected as outliers by population genomics approaches. The first one is based on the gel excision of the target AFLP fragment, after simplification of the AFLP fingerprint and separation of the fragments by migration. The second one is a combination of classical AFLP protocol and 454 pyrosequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vos P, Hogers R, Bleeker M, Reijans M et al (1995) AFLP – a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  2. Bensch S, Akesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914

    Article  PubMed  CAS  Google Scholar 

  3. Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117

    Article  PubMed  CAS  Google Scholar 

  4. Bonin A, Bellemain E, Eidesen PB et al (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  PubMed  CAS  Google Scholar 

  5. Pompanon F, Bonin A, Bellemain E et al (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859

    Article  PubMed  CAS  Google Scholar 

  6. Paris M, Bonnes B, Ficetola GF et al (2010) Amplified fragment length homoplasy: in silico analysis for model and non-model species. BMC Genomics 11:287

    Google Scholar 

  7. Bonin A, Taberlet P, Miaud C et al (2006) Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Mol Biol Evol 23:773–783

    Article  PubMed  CAS  Google Scholar 

  8. Poncet BN, Herrmann D, Gugerli F et al (2010) Tracking genes of ecological relevance using a genome scan in two independent regional population samples of Arabis alpina. Mol Ecol 19:2896–2907

    Article  PubMed  CAS  Google Scholar 

  9. Conord C, Lemperiere G, Taberlet P et al (2006) Genetic structure of the forest pest Hylobius abietis on conifer plantations at different spatial scales in Europe. Heredity 97:46–55

    Article  PubMed  CAS  Google Scholar 

  10. Egan SP, Nosil P, Funk DJ (2008) Selection and genomic differentiation during ecological speciation: isolating the contributions of host association via a comparative genome scan of Neochlamisus bebbianae leaf beetles. Evolution 62:1162–1181

    Article  PubMed  CAS  Google Scholar 

  11. Nosil P, Egan SP, Funk DJ (2008) Heterogeneous genomic differentiation between walking-stick ecotypes: “isolation by adaptation” and multiple roles for divergent selection. Evolution 62:316–336

    Article  PubMed  Google Scholar 

  12. Manel S, Conord C, Despres L (2009) Genome scan to assess the respective role of host-plant and environmental constraints on the adaptation of a widespread insect. BMC Evol Biol 9:288

    Google Scholar 

  13. Herrera CM, Bazaga P (2008) Population-genomic approach reveals adaptive floral divergence in discrete populations of a hawk moth-pollinated violet. Mol Ecol 17:5378–5390

    Article  PubMed  CAS  Google Scholar 

  14. Paris M, Boyer S, Bonin A et al (2010) Genome scan in the mosquito Aedes rusticus: population structure and detection of positive selection after insecticide treatment. Mol Ecol 19:325–337

    Article  PubMed  Google Scholar 

  15. Meyer CL, Vitalis R, Saumitou-Laprade P, Castric V (2009) Genomic pattern of adaptive divergence in Arabidopsis halleri, a model species for tolerance to heavy metal. Mol Ecol 18:2050–2062

    Article  PubMed  Google Scholar 

  16. Rossi M, Bitocchi E, Bellucci E et al (2009) Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl 2:504–522

    Article  Google Scholar 

  17. Wilding CS, Butlin RK, Grahame J (2001) Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J Evol Biol 14:611–619

    Article  CAS  Google Scholar 

  18. Campbell D, Bernatchez L (2004) Generic scan using AFLP markers as a means to assess the role of directional selection in the divergence of sympatric whitefish ecotypes. Mol Biol Evol 21:945–956

    Article  PubMed  CAS  Google Scholar 

  19. Savolainen V, Anstett MC, Lexer C et al (2006) Sympatric speciation in palms on an oceanic island. Nature 441:210–213

    Article  PubMed  CAS  Google Scholar 

  20. Nosil P, Funk DJ, Ortiz-Barrientos D (2009) Divergent selection and heterogeneous genomic divergence. Mol Ecol 18:375–402

    Article  PubMed  Google Scholar 

  21. Brugmans B, van der Hulst RG, Visser RG et al (2003) A new and versatile method for the successful conversion of AFLP markers into simple single locus markers. Nucleic Acids Res 31:e55

    Google Scholar 

  22. van Orsouw NJ, Hogers RCJ, Janssen A et al (2007) Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS One 2:11

    Google Scholar 

  23. Paris M, Despres L (2012) Identifying insecticide resistance genes in mosquito by combining AFLP genome scans and 454 pyrosequencing. Mol Ecol 21:1672–1686

    Article  PubMed  CAS  Google Scholar 

  24. Valentini A, Miquel C, Nawaz MA et al (2009) New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Mol Ecol Resour 9:51–60

    Article  PubMed  CAS  Google Scholar 

  25. Innan H, Terauchi R, Kahl G et al (1999) A method for estimating nucleotide diversity from AFLP data. Genetics 151:1157–1164

    PubMed  CAS  Google Scholar 

  26. Vekemans X, Beauwens T, Lemaire M et al (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Cécile Godé and Pierre Saumitou-Laprade for technical assistance and to Martin C. Fischer and Aurélie Bonin for helpful comments on an earlier version of this work. M.P. and L.D. were supported by a grant from the French Rhône-Alpes region (grant 501545401) and by the French National Research Agency (project ANR-08-CES-006-01 DIBBECO). C.L.M. was funded by the French Ministry of Research and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margot Paris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Paris, M., Meyer, CL., Blassiau, C., Coissac, E., Taberlet, P., Després, L. (2012). Two Methods to Easily Obtain Nucleotide Sequences from AFLP Loci of Interest. In: Pompanon, F., Bonin, A. (eds) Data Production and Analysis in Population Genomics. Methods in Molecular Biology, vol 888. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-870-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-870-2_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-869-6

  • Online ISBN: 978-1-61779-870-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics