Skip to main content

Haplotype Inference

  • Protocol
  • First Online:
Data Production and Analysis in Population Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 888))

Abstract

The information carried by combination of alleles on the same chromosome, called haplotypes, is of crucial interest in several fields of modern genetics as population genetics or association studies. However, this information is usually lost by sequencing and needs, therefore, to be recovered by inference. In this chapter, we give a brief overview on the methods able to tackle this problem and some practical concerns to apply them on real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The HapMap consortium (2003) The international HapMap project. Nature 426:789–796

    Article  Google Scholar 

  2. The HapMap consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Article  Google Scholar 

  3. The HapMap consortium (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  Google Scholar 

  4. The Wellcome Trust Case-Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  Google Scholar 

  5. Zhang S, Pakstis AJ, Kidd KK, Zhao H (2001) Comparisons of two methods for haplotype reconstruction and haplotype frequency estimation from population data. Am J Hum Genet 69:906–914

    Article  PubMed  CAS  Google Scholar 

  6. Schaid DJ (2004) Evaluating associations of haplotypes with traits. Genet Epidemiol 27:348–364

    Article  PubMed  Google Scholar 

  7. Xu J (2006) Extracting haplotypes from diploid organisms. Curr Issues Mol Biol 8:113–122

    PubMed  CAS  Google Scholar 

  8. Niu T (2004) Algorithms for inferring haplotypes. Genet Epidemiol 27:334–347

    Article  PubMed  Google Scholar 

  9. Salem RM, Wessel J, Schork NJ (2005) A comprehensive literature review of haplotyping software and methods for use with unrelated individuals. Hum Genomics 2:39–66

    PubMed  CAS  Google Scholar 

  10. Pritchard JK, Przeworski M (2001) Linkage disequilibrium in humans: models and data. Am J Hum Genet 69:1–14

    Article  PubMed  CAS  Google Scholar 

  11. Daly MJ, Rioux JD, Schaffner SF et al (2001) High-resolution haplotype structure in the human genome. Nat Genet 29:229–232

    Article  PubMed  CAS  Google Scholar 

  12. Patil N, DA BernoAJ H et al (2001) Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294:719–1723

    Article  Google Scholar 

  13. Gabriel SB, Schaffner SF, Nguyen H et al (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  PubMed  CAS  Google Scholar 

  14. Kong A, Gudbjartsson DF, Sainz J et al (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247

    PubMed  CAS  Google Scholar 

  15. Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169

    Article  PubMed  CAS  Google Scholar 

  16. Mayo O (2008) A century of Hardy-Weinberg equilibrium. Twin Res Hum Genet 11:249–256

    Article  PubMed  Google Scholar 

  17. Excoffier L, Slatkin M (1995) Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 12:921–927

    PubMed  CAS  Google Scholar 

  18. Long JC, Williams RC, Urbanek M (1995) An E-M algorithm and testing strategy for multiple-locus haplotypes. Am J Hum Genet 56:799–810

    PubMed  CAS  Google Scholar 

  19. Hawley ME, Kidd KK (1995) HAPLO: a program using the EM algorithm to estimate the frequencies of multi-site haplotypes. J Hered 86:409–411

    PubMed  CAS  Google Scholar 

  20. Zaykin DV, Westfall PH, Young SS et al (2002) Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered 53:79–91

    Article  PubMed  Google Scholar 

  21. Qin ZS, Niu T, Liu JS (2002) Partition-ligation-expectation-maximization algorithm for haplotype inference with single-nucleotide polymorphisms. Am J Hum Genet 71:1242–1247

    Article  PubMed  CAS  Google Scholar 

  22. Delaneau O, Coulonges C, Boelle P et al (2007) ISHAPE: new rapid and accurate software for haplotyping. BMC Bioinformatics 8:205

    Article  PubMed  Google Scholar 

  23. Bafna V, Gusfield D, Lancia G, Yooseph S (2003) Haplotyping as perfect phylogeny: a direct approach. J Comput Biol 10:323–340

    Article  PubMed  CAS  Google Scholar 

  24. Eskin E, Halperin E, Karp RM (2003) Efficient reconstruction of haplotype structure via perfect phylogeny. J Bioinform Comput Biol 1:1–20

    Article  PubMed  CAS  Google Scholar 

  25. Halperin E, Eskin E (2004) Haplotype reconstruction from genotype data using Imperfect Phylogeny. Bioinformatics 20:1842–1849

    Article  PubMed  CAS  Google Scholar 

  26. Li N, Stephens M (2003) Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics 165:2213–2233

    PubMed  CAS  Google Scholar 

  27. Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462

    Article  PubMed  CAS  Google Scholar 

  28. Rabiner LR (1989) A tutorial on hidden Markov model and selected applications in speech recongnition. Proc IEEE 77:257–285

    Article  Google Scholar 

  29. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed  CAS  Google Scholar 

  30. Marchini J, Howie B, Myers S et al (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39:906–913

    Article  PubMed  CAS  Google Scholar 

  31. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529

    Article  PubMed  Google Scholar 

  32. Delaneau O, Coulonges C, Zagury J (2008) Shape-IT: new rapid and accurate algorithm for haplotype inference. BMC Bioinformatics 9:540

    Article  PubMed  Google Scholar 

  33. Kimmel G, Shamir R (2005) The incomplete perfect phylogeny haplotype problem. J Bioinform Comput Biol 3:359–384

    Article  PubMed  CAS  Google Scholar 

  34. Sun S, Greenwood CMT, Neal RM (2007) Haplotype inference using a Bayesian Hidden Markov model. Genet Epidemiol 31:937–948

    Article  PubMed  Google Scholar 

  35. Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78:629–644

    Article  PubMed  CAS  Google Scholar 

  36. Li Y, Abecasis GR (2006) Mach 1.0: rapid haplotype reconstruction and missing genotype inference. Am J Hum Genet 79:2290

    Google Scholar 

  37. Kimmel G, Shamir R (2005) A block-free hidden Markov model for genotypes and its application to disease association. J Comput Biol 12:1243–1260

    Article  PubMed  CAS  Google Scholar 

  38. Clark AG (1990) Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol 7:111–122

    PubMed  CAS  Google Scholar 

  39. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265

    Article  PubMed  CAS  Google Scholar 

  40. Marchini J, Cutler D, Patterson N et al (2006) A comparison of phasing algorithms for trios and unrelated individuals. Am J Hum Genet 78:437–450

    Article  PubMed  CAS  Google Scholar 

  41. Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097

    Article  PubMed  CAS  Google Scholar 

  42. Browning SR (2008) Missing data imputation and haplotype phase inference for genome-wide association studies. Hum Genet 124:439–450

    Article  PubMed  CAS  Google Scholar 

  43. Browning BL, Yu Z (2009) Simultaneous genotype calling and haplotype phasing improves genotype accuracy and reduces false-positive associations for genome-wide association studies. Am J Hum Genet 85:847–861

    Article  PubMed  CAS  Google Scholar 

  44. Tishkoff SA, Pakstis AJ, Ruano G, Kidd KK (2000) The accuracy of statistical methods for estimation of haplotype frequencies: an example from the CD4 locus. Am J Hum Genet 67:518–522

    Article  PubMed  CAS  Google Scholar 

  45. Fallin D, Schork NJ (2000) Accuracy of haplotype frequency estimation for biallelic loci, via the expectation-maximization algorithm for unphased diploid genotype data. Am J Hum Genet 67:947–959

    Article  PubMed  CAS  Google Scholar 

  46. Adkins RM (2004) Comparison of the accuracy of methods of computational haplotype inference using a large empirical dataset. BMC Genet 5:22

    Article  PubMed  Google Scholar 

  47. Coulonges C, Delaneau O, Girard M et al (2006) Computation of haplotypes on SNPs subsets: advantage of the “global method”. BMC Genet 7:50

    Article  PubMed  Google Scholar 

  48. Hinds DA, Stuve LL, Nilsen GB et al (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307:1072–1079

    Article  PubMed  CAS  Google Scholar 

  49. Myers S, Bottolo L, Freeman C et al (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310:321–324

    Article  PubMed  CAS  Google Scholar 

  50. Sabeti PC, Varilly P, Fry B et al (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449:913–918

    Article  PubMed  CAS  Google Scholar 

  51. Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11:499–511

    Article  PubMed  CAS  Google Scholar 

  52. The 1000 Genomes Project Consortium (2010) A map of human genome variation from ­population-scale sequencing. Nature 467:1061–1073

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Zagury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Delaneau, O., Zagury, JF. (2012). Haplotype Inference. In: Pompanon, F., Bonin, A. (eds) Data Production and Analysis in Population Genomics. Methods in Molecular Biology, vol 888. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-870-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-870-2_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-869-6

  • Online ISBN: 978-1-61779-870-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics