Skip to main content

Primary Cell and Micromass Culture in Assessing Developmental Toxicity

  • Protocol
  • First Online:
Developmental Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 889))

Abstract

Under the European Commission’s New Chemical Policy both currently used and new chemicals should be tested for their toxicities in several areas, one of which was reproductive/developmental toxicity. Thousands of chemicals will need testing which will require a large number of laboratory animals. In vitro systems (as pre-screens or as validated alternatives) appear to be useful tools to reduce the number of whole animals used or refine procedures and hence decrease the cost for the chemical industry. Validated in vitro systems exist for developmental toxicity/embryotoxicity testing. Indeed, three assays have recently been validated: the whole embryo culture (WEC), the rat limb bud micromass (MM), and the embryonic stem cell test (EST). In this article, the use of primary embryonic cell culture, and in particular micromass culture, including a relatively novel chick heart micromass (MM) culture system has been described and compared to the validated D3 mouse embryonic stem cell (ESC) test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey J, Knight A, Balcombe J (2005) The future of teratology research is in vitro. Biogenic Amines 19:97–145

    Article  CAS  Google Scholar 

  2. Balls M, Blaauboer BJ, Fentem JH, Bruner L, Combes RD, Ekwall B, Fielder RJ, Guillouzo A, Lewis RW, Lovell DP et al (1995) Practical aspects of the validation of toxicity test procedures. Altern Lab Anim 23:129–147

    Google Scholar 

  3. Polifka JE, Friedman JM (1999) Clinical teratology: identifying teratogenic risks in humans. Clin Genet 56:409–420

    Article  PubMed  CAS  Google Scholar 

  4. Spielmann H, Pohl I, Doring B, Liebsch M, Moldenhauer F (1997) The embryonic stem cell test (EST), an in vitro embryotoxicity test using two permanent mouse cell lines: 3T3 fibroblasts and embryonic stem cells. Vitro Toxicol 10:119–127

    CAS  Google Scholar 

  5. Spielmann H (1998) Reproduction and development. Environ Health Perspect 106: 571–575

    PubMed  Google Scholar 

  6. Genschow E, Scholz G, Brown NA, Piersma AH, Brady M, Clemann N, Huuskonen H, Paillard F, Bremer S, Spielmann H (1999) Development of prediction models for three in vitro embryotoxicity tests which are evaluated in an ECVAM validation study. ALTEX 16:73–83

    PubMed  Google Scholar 

  7. Genschow E, Scholz G, Brown N, Piersma A, Brady M, Clemann N, Huuskonen H, Paillard F, Bremer S, Becker K et al (2000) Development of prediction models for three in vitro embryotoxicity tests in an ECVAM validation study. In Vitr Mol Toxicol 13: 51–66

    PubMed  CAS  Google Scholar 

  8. Genschow E, Spielmann H, Scholz G, Seiler A, Brown N, Piersma A, Brady M, Clemann N, Huuskonen H, Paillard F et al (2002) The ECVAM international validation study on in vitro embryotoxicity tests: results of the definitive phase and evaluation of prediction models. European Centre for the Validation of Alternative Methods. Altern Lab Anim 30: 151–176

    PubMed  CAS  Google Scholar 

  9. Brown NA (2002) Selection of test chemicals for the ECVAM international validation study on in vitro embryotoxicity tests. European Centre for the Validation of Alternative Methods. Altern Lab Anim 30:177–198

    PubMed  CAS  Google Scholar 

  10. Collins TFK (1987) Teratological research using in vtro systems. V. Non-mammaliam model systems. Environ Health Perspect 72: 237–249

    Article  PubMed  CAS  Google Scholar 

  11. Johnson EM (1980) A subvertebrate system for rapid determination of potential teratogenic hazards. J Environ Pathol Toxicol 4:153–156

    PubMed  CAS  Google Scholar 

  12. Johnson EM, Gabel BEG (1982) Application of the Hydra assay for rapid detection of developmental hazards. J Am Coll Toxicol 1:57–71

    Article  CAS  Google Scholar 

  13. Johnson EM, Gabel BEG (1983) An abnormal ‘embryo’ for detection of abnormal developmental biology. Fundam Appl Toxicol 3: 243–249

    Article  PubMed  CAS  Google Scholar 

  14. Johnson EM, Gabel BEG, Larson J (1984) The developmental toxicity and structure/activity correlates of glycols and glycol ethers. Environ Health Perspect 57:135–139

    Article  PubMed  CAS  Google Scholar 

  15. Johnson EM, Gorman RM, Gabel BEG, George ME (1982) The Hydra attenuate system for detection of teratogenic hazards. Teratog Carcinog Mutagen 2:263–276

    Article  PubMed  CAS  Google Scholar 

  16. Chun YH, Johnson EM, Gabel BEG, Cadogan ASA (1983) Regeneration by dissociated adult hydra cells: a histological study. Teratology 27:81–87

    Article  PubMed  CAS  Google Scholar 

  17. Johnson EM (1985) A review of advances in prescreening for teratogenic hazards. Prog Drug Res 29:121–154

    Article  PubMed  CAS  Google Scholar 

  18. Kudia AJ (1984) Hydra reaggregation: a rapid assay to predict teratogenic hazards induced by environmental toxicity. J Wash Acad Sci 74:102–107

    Google Scholar 

  19. Wilby OK, Tesh JM (1990) The hydra assay as an early screen for teratogenic potential. Toxicol In Vitro 4:582–583

    Article  PubMed  CAS  Google Scholar 

  20. Clayton FC, Francoeur RT (1971) Some teratogenic effects of vinblastine on the external morphology of Drosophila melanogaster. Oncology 25:188–192

    Article  PubMed  CAS  Google Scholar 

  21. Parkash 0 (1971) On the teratogenic effect of thymidine and its suppression by deoxycytidine in Drosophila melanogaster. Experientia 27:1089–1090

    Article  PubMed  CAS  Google Scholar 

  22. Gilbert EF, Pitot HC, Bruyere HJ, Cheung AL (1973) Teratogenic effects of 5-bromodeoxyuridine on the external morphology of Drosophila melanogaster. Teratology 7:205–208

    Article  PubMed  CAS  Google Scholar 

  23. Schuler RL, Hardin BD, Niemeier RW (1982) Drosophila as a tool for the rapid assessment of chemicals for teratogenicity. Teratog Carcinog Mutagen 2:293–301

    Article  PubMed  CAS  Google Scholar 

  24. Bournias-Vardiabasis N, Teplitz RL, Chernoff GF, Seecof RL (1983) Detection of teratogens in the Drosophila embryonic cell culture test: assay of 100 chemicals. Teratology 28: 109–122

    Article  PubMed  CAS  Google Scholar 

  25. Nieuwkoop PD, Faber J (1956) Normal table of Xenopus laevis (Daud.). North-Holland Publishing Co, Amsterdam

    Google Scholar 

  26. Dawson DA, McCormick CA, Bantle JA (1985) Detection of teratogenic substances in acidic mine water samples using the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). J Appl Toxicol 5:234–244

    Article  PubMed  CAS  Google Scholar 

  27. Bantle JA, Burton DT, Dawson DA, Dumont JN, Finch RA, Fort DJ, Linder G, Rayburn JR, Buchwalter D, Maurice MA et al (1994) Initial interlaboratory validation study of FETAX: phase I testing. J Appl Toxicol 14: 213–223

    Article  PubMed  CAS  Google Scholar 

  28. Fort DJ, Stover EL, Bantle JA, Rayburn JR, Hull MA, Finch RA, Burton DT, Turley SD, Dawson DA, Linder G et al (1998) Phase III interlaboratory study of FETAX, Part 2: interlaboratory validation of an exogenous metabolic activation system for frog embryo teratogenesis assay–Xenopus (FETAX). Drug Chem Toxicol 21:1–14

    Article  PubMed  CAS  Google Scholar 

  29. FETAX Expert Panel Meeting Summary Minutes (2000) http://iccvam.niehs.nih.gov/meetings/minutes/fetaxMin.pdf. Accessed 12 Sept 2010

  30. Birge WJ, Black JA, Ramey BA (1981) The reproductive toxicology of aquatic contaminants. In: Saxena J, Fischer F (eds) Hazard assessment of chemicals-current developments. Academic, New York, pp 59–115

    Google Scholar 

  31. Dumont JN, Schultz TW, Newman SM (1982) A frog embryo teratogenesis assay: Xenopus (FETAX)-a model for teratogen screening. Teratology 25:37A–38A

    Article  Google Scholar 

  32. Dumont JN, Schultz TW, Epler RG (1983) The response of the FETAX model to mammalian teratogens. Teratology 27:39A–40A

    Google Scholar 

  33. Dumont JN, Epler RG (1984) Validation studies on the FETAX teratogenesis assay (frog embryos). Teratology 29:27A

    Google Scholar 

  34. Doetschman TC, Eistetter HR, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45

    PubMed  CAS  Google Scholar 

  35. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MS, Fine DL et al (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48:589–601

    PubMed  CAS  Google Scholar 

  36. O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426

    Article  PubMed  Google Scholar 

  37. Andrews MJ, Garle MJ, Clothier RH (1997) Reduction of the new tetrazolium dye, Alamar Blue, in cultured rat hepatocytes and liver fractions. Altern Lab Anim 25:641–653

    Google Scholar 

  38. Heo DS, Park JG, Hata K, Day R, Herberman RB, Whiteside TL (1990) Evaluation of tetrazolium-based semiautomatic colorimetric assay for measurement of human antitumor cytotoxicity. Cancer Res 50:3681–3690

    PubMed  CAS  Google Scholar 

  39. Goegan P, Johnson G, Vincent R (1995) Effects of serum protein and colloid on AB assay in cell cultures. Toxicol In Vitro 9: 257–266

    Article  PubMed  CAS  Google Scholar 

  40. Back SA, Khan R, Gan X, Rosenberg PA, Volpe JJ (1999) A new Alamar Blue viability assay to rapidly quantify oligodendrocyte death. J Neurosci Methods 91:47–54

    Article  PubMed  CAS  Google Scholar 

  41. Clothier RH, Sansom R (1996) Effects of surfactant retreatment in vitro: a method to evaluate changes in cell junctions and in cell viability. Altern Lab Anim 24:859–865

    Google Scholar 

  42. Page B, Page M, Noel C (1993) A new fluorometric assay for cytotoxicity measurements in vitro. Int J Oncol 3:473–476

    PubMed  CAS  Google Scholar 

  43. Starcher B (2001) A ninhydrin-based assay to quantitate the total protein content of tissue samples. Anal Biochem 292:125–129

    Article  PubMed  CAS  Google Scholar 

  44. Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with the folin phenol reagent. J Biol Chem 192:265–275

    Google Scholar 

  45. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  46. Knox P, Uphill PF, Fry JR, Benford DJ, Balls M (1986) The FRAME multicentre project on in vitro cytotoxicity. Funds Chem Toxicol 24:457–463

    Article  CAS  Google Scholar 

  47. Clothier R, Gottschalg E, Casati S, Balls M (2006) The FRAME alternatives laboratory database. 1. In vitro basal cytotoxicity determined by the Kenacid blue total protein assay. Altern Lab Anim 34:151–175

    PubMed  CAS  Google Scholar 

  48. de st. Groth SF, Webster RG, Datyner A (1963) Two new staining procedures for quantitative estimation of proteins on electrophoretic strips. Biochim Biophys Acta 71:377

    Article  Google Scholar 

  49. Borenfreund E, Puerner JA (1985) Toxicity determined in vitro by morphological alteration and neutral absorption. Toxicol Lett 24: 119–124

    Article  PubMed  CAS  Google Scholar 

  50. Flint O (1983) A micromass culture method for rat embryonic neural cells. J Cell Sci 61: 247–262

    PubMed  CAS  Google Scholar 

  51. Flint OP, Orton TC (1984) An in vitro assay for teratogens with cultures of rat embryo midbrain and limb bud cells. Toxicol Appl Pharmacol 76:383–395

    Article  PubMed  CAS  Google Scholar 

  52. Parsons JF, Rockley J, Richold M (1990) In Vitro micromass teratogen test: Interpretation of results from a blind trial of 25 compounds using three separate criteria. Toxicol In Vitro 4:609–611

    Article  PubMed  CAS  Google Scholar 

  53. Duke PJ, Montufar-Solis D, Hamazaki T, Sato A (1998) Clinorotation reduces number, but not size, of cartilaginous nodules formed in micromass cultures of mouse limb bud cells. Adv Space Res 21:1065–1072

    Article  PubMed  CAS  Google Scholar 

  54. Doyle D, Kapron CM (2002) Manganese-induced toxicity in micromass cultures of mouse embryo limb bud cells. Toxicol In Vitro 16:101–106

    Article  PubMed  CAS  Google Scholar 

  55. Minta M, Wilk I, Zmudski J. Embryotoxicity of carbendazim in rat and hamster micromass cultures. Bull Vet Inst Pulawy 48: 481–484

    Google Scholar 

  56. Meyer MP, Swann K, Burnstock G, Clarke JDW (2001) The extracellular ATP receptor, cP2Y1, inhibits cartilage formation in micromass cultures of chick limb mesenchyme. Dev Dyn 222:494–505

    Article  PubMed  CAS  Google Scholar 

  57. L’Huillier N, Pratten MK, Clothier RH (2002) The relative embryotoxicity of 1,3-dichloro-2-propanol on primary chick embryonic cells. Toxicol In Vitro 16:433–442

    Article  PubMed  Google Scholar 

  58. Mutch P (2002) MRes thesis, University of Nottingham 2002

    Google Scholar 

  59. Tsuchiya T, Takahashi A, Asada S, Takakubo F, Ohsumi-Yamashida N, Eto K (1991) Comparative studies of embryotoxic action of ethylenethiourea in rat whole embryo and embryonic cell culture. Teratology 43:319–324

    Article  PubMed  CAS  Google Scholar 

  60. Spielmann H, Genschow E, Scholz G, Brown NA, Piersma AH, Brady M, Clemann N, Huuskonen H, Paillard F, Bremer S et al (2001) Preliminary results of the ECVAM validation study on three in vitro embryotoxicity tests. Altern Lab Anim 29:301–303

    PubMed  CAS  Google Scholar 

  61. Uphill PF, Wilkins SR, Allen JA (1990) In vitro micromass teratogen test: results from a blind trial of 25 compounds. Toxicol In Vitro 4:623–626

    Article  PubMed  CAS  Google Scholar 

  62. Ede DA, Flint OP (1975) Intercellular adhesion and formation of aggregates in normal and talpid3 mutant chick limb mesenchyme. J Cell Sci 18:97–111

    PubMed  CAS  Google Scholar 

  63. Ede DA, Flint OP (1975) Cell movement and adhesion in the developing chick wing bud: studies on cultured mesenchyme cells from normal and talpid mutant embryos. J Cell Sci 18:301–313

    PubMed  CAS  Google Scholar 

  64. Atterwill CK, Johnston H, Thomas SM (1992) Models for the in vitro assessment of neurotoxicity in the nervous system in relation to xenobiotic and neurotrophic factor-mediated events. Neurotoxicology 13:39–53

    PubMed  CAS  Google Scholar 

  65. Stern CD (1993) Avian embryos. In: Stern CD, Holland PWH (eds) Essential developmental biology a practical approach. Oxford University Press, New York, USA

    Google Scholar 

  66. Bellairs R, Osmond M (eds) (2005) The atlas of chick development, 2nd edn. Academic, San Diego

    Google Scholar 

  67. George-Weinstein M, Gerhart J, Foti F, Lash JW (1994) Maturation of myogenic and chondrogenic cells in the presomitic mesoderm of the chick embryo. Exp Cell Res 211: 263–274

    Article  PubMed  CAS  Google Scholar 

  68. Wiger R, Stottum A, Brunborg G (1988) Estimating chemical developmental hazard in a chicken embryo limb bud micromass system. Pharmacol Toxicol 62:32–37

    Article  PubMed  CAS  Google Scholar 

  69. Slack J (1991) From egg to embryo: regional specification in early development, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  70. Patten BM (1971) Early embryology of the chick, 5th edn. McGraw-Hill, New York

    Google Scholar 

  71. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  Google Scholar 

  72. Rudy DE, Yatskievych TA, Antin PB, Gregorio CC (2001) Assembly of thick, thin, and titin filaments in chick precardiac explants. Dev Dyn 221:61–71

    Article  PubMed  CAS  Google Scholar 

  73. Hurst HS, Clothier RH, Pratten M (2007) An evaluation of a novel chick cardiomyocyte micromass culture assay with two teratogens/embryotoxins associated with heart defects. Altern Lab Anim 35:505–514

    PubMed  CAS  Google Scholar 

  74. Hurst H, Clothier R, Pratten M (2009) An evaluation of the chick cardiomyocyte micromass system for identification of teratogens in a blind trial. Reprod Toxicol 28:503–510

    Article  PubMed  CAS  Google Scholar 

  75. Memon S, Pratten MK (2009) Developmental toxicity of ethanol in chick heart in ovo and in micromass culture can be prevented by addition of vitamin C and folic acid. Reprod Toxicol 28:262–269

    Article  PubMed  CAS  Google Scholar 

  76. Ahir BK, Pratten MK (2011) Association of anxiolytic drugs diazepam and lorazepam, and the antiepileptic valproate, with heart defects – effects on cardiomyocytes in micromass (MM) and embryonic stem cell culture. Reprod Toxicol 31:66–74

    Google Scholar 

  77. Flint OP (1987) An in vitro test for teratogens using cultures of rat embryo cells. In: Atterwill CK, Steele CE (eds) In vitro toxicology. Cambridge University Press, Cambridge, pp 339–363

    Chapter  Google Scholar 

  78. Zandstra PW, Le HV, Daley GQ, Griffith LG, Lauffenburger DA (2000) Leukemia inhibitory factor (LIF) concentration modulates embryonic stem cell self-renewal and differentiation independently of proliferation. Biotechnol Bioeng 69:607–617

    Article  PubMed  CAS  Google Scholar 

  79. Wobus AM, Wallukat G, Hescheler J (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48:173–182

    Article  PubMed  CAS  Google Scholar 

  80. Wobus AM, Rohwedel J, Maltsev V, Hescheler J (1994) In vitro differentiation of embryonic stem cells into cardiomyocytes or skeletal muscle cells is specifically modulated by retinoic acid. Roux’s Arch Dev Biol 204:36–45

    Article  CAS  Google Scholar 

  81. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168:342–357

    Article  PubMed  CAS  Google Scholar 

  82. Bigot K, de Lange J, Archer G, Clothier R, Bremer S (1999) The relative semi-quantification of mRNA expression as a useful toxicological endpoint for the identification of embryotoxic/teratogenic substances. Toxicol in Vitro 13:619–623

    Article  PubMed  CAS  Google Scholar 

  83. Robbins J, Gulick J, Sanchez A, Howles P, Doetschman T (1990) Mouse embryonic stem cells express the cardiac myosin heavy chain genes during development in vitro. J Biol Chem 265:11905–11909

    PubMed  CAS  Google Scholar 

  84. Robertson EJ (1987) Embryo-derived cell lines. In: Robertson EJ (ed) Teratocarcinomas and embryonic stem cells – a practical approach. IRL Press, UK, pp 71–112

    Google Scholar 

  85. Rudnicki MA, Jackowski G, Saggin L, McBurney MW (1990) Actin and myosin expression during development of cardiac muscle from cultured embryonal carcinoma cells. Dev Biol 138:348–358

    Article  PubMed  CAS  Google Scholar 

  86. Schmitt RM, Bruyns E, Snodgrass HR (1991) Hematopoietic development of embryonic stem cells in vitro: cytokine and receptor gene expression. Genes Dev 5:728–740

    Article  PubMed  CAS  Google Scholar 

  87. Maltsev VA, Wobus AM, Rohwedel J, Bader M, Hescheler J (1994) Cardiomyocyte differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ Res 75:233–244

    Article  PubMed  CAS  Google Scholar 

  88. Rohwedel J, Maltsev V, Bober E, Arnold HH, Hescheler J, Wobus AM (1994) Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol 164:87–101

    Article  PubMed  CAS  Google Scholar 

  89. Strübing C, Ahnert-Hilger G, Shan J, Wiedenmann B, Hescheler J, Wobus AM (1995) Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech Dev 53: 275–287

    Article  PubMed  Google Scholar 

  90. Bagutti C, Wobus AM, Fassler R, Watt FM (1996) Differentiation of embryonic stem cells into keratinocytes: comparision of wild type and beta 1 integrin-deficient cells. Dev Biol 179:184–196

    Article  PubMed  CAS  Google Scholar 

  91. Maltsev VA, Rohwedel J, Hescheler J, Wobus AM (1993) Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev 44:41–50

    Article  PubMed  CAS  Google Scholar 

  92. INVITTOX protocol no 113 (1996) Embryonic stem cell test (EST). The ERGATT/FRAME data bank of in vitro techniques in toxicology. http://ecvam-sis.jrc.it/. Accessed 11 Mar 2004

  93. Scholz G, Genschow E, Pohl I, Bremer S, Paparella M, Raabe H, Southee J, Spielmann H (1999) Prevalidation of the embryonic stem cell test (EST) – a new in vitro embryotoxicity test. Toxicol In Vitro 13:675–681

    Article  PubMed  CAS  Google Scholar 

  94. Genschow E, Spielmann H, Scholz G, Pohl I, Seiler A, Clemann N, Bremer S, Becker K (2004) Validation of the embryonic stem cell test in the international ECVAM validation study on three in vitro embryotoxicity tests. Altern Lab Anim 32:209–244

    PubMed  CAS  Google Scholar 

  95. Balls M (2002) Replacing animals experimentation: not a question of if, but when and by what route. Altern Lab Anim 30:147–148

    PubMed  CAS  Google Scholar 

  96. Hoyer PB (2001) Reproductive toxicology: current and future directions. Biochem Pharmacol 62:1557–1564

    Article  PubMed  CAS  Google Scholar 

  97. Shepherd TH, Brent RL, Friedman JM, Jones KL, Miller RK, Moore CA, Polifka JE (2002) Update on new developments in the study of human teratogens. Teratology 65:153–161

    Article  Google Scholar 

  98. Piersma AH (2004) Validation of alternative methods for developmental toxicity testing. Toxicol Lett 149:147–153

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pratten Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pratten, M., Ahir, B.K., Smith-Hurst, H., Memon, S., Mutch, P., Cumberland, P. (2012). Primary Cell and Micromass Culture in Assessing Developmental Toxicity. In: Harris, C., Hansen, J. (eds) Developmental Toxicology. Methods in Molecular Biology, vol 889. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-867-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-867-2_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-866-5

  • Online ISBN: 978-1-61779-867-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics