Skip to main content

DNA Methylation Screening and Analysis

  • Protocol
  • First Online:
Book cover Developmental Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 889))

Abstract

DNA methylation is an epigenetic form of gene regulation that is universally important throughout the life course, especially during in utero and postnatal development. DNA methylation aids in cell cycle regulation and cellular differentiation processes. Previous studies have demonstrated that DNA methylation profiles may be altered by diet and the environment, and that these profiles are especially vulnerable during development. Thus, it is important to understand the role of DNA methylation in developmental governance and subsequent disease progression. A variety of molecular methods exist to assay for global, gene-specific, and epigenome-wide methylation. Here we describe these methods and discuss their relative strengths and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dolinoy D, Huang D, Jirtle R (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104:13056–13061

    Article  PubMed  CAS  Google Scholar 

  2. Maltepe E, Bakardjiev A, Fisher S (2010) The placenta: transcriptional, epigenetic, and physiological integration during development. J Clin Invest 120:1016–1025

    Article  PubMed  CAS  Google Scholar 

  3. Matzke M, Birchler J (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genetics 6:24–35

    Article  CAS  Google Scholar 

  4. Dodge JE, Ramsahoye BH, Wo ZG, Okano M, Li E (2002) De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation. Gene 289:41–48

    Article  PubMed  CAS  Google Scholar 

  5. Lister R, Pelizzola M, Dowen R, Hawkins RD, Hon G, Tonti-Filippini J, Nery J, Lee L, Ye Z, Ngo Q-M, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson J, Ren B, Ecker J (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  PubMed  CAS  Google Scholar 

  6. Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23

    Article  PubMed  CAS  Google Scholar 

  7. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  PubMed  CAS  Google Scholar 

  8. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14:R47–R58

    Article  PubMed  CAS  Google Scholar 

  9. Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    Article  PubMed  CAS  Google Scholar 

  10. Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature 403:501–502

    Article  PubMed  CAS  Google Scholar 

  11. Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J, Reik W (2003) Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35:88–93

    Article  PubMed  CAS  Google Scholar 

  12. Faulk C, Dolinoy DC (2011) Timing is everything: The when and how of environmentally induced changes in the epigenome of animals, Epigenetics 6:791–797

    Google Scholar 

  13. Bernal A, Jirtle R (2010) Epigenomic disruption: the effects of early developmental exposures. Birth Defects Res A Clin Mol Teratol 88:938–944

    Article  PubMed  CAS  Google Scholar 

  14. Anway M, Cupp A, Uzumcu M, Skinner M (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    Article  PubMed  CAS  Google Scholar 

  15. Pilsner JR, Lazarus A, Nam D-H, Letcher R, Sonne C, Dietz R, Basu N (2010) Mercury-associated DNA hypomethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife. Mol Ecol 19:307–314

    Article  PubMed  CAS  Google Scholar 

  16. Karimi M, Johansson S, Stach D, Corcoran M, Grandr D, Schalling M, Bakalkin G, Lyko F, Larsson C, Ekstrm T (2006) LUMA (LUminometric Methylation Assay) – a high throughput method to the analysis of genomic DNA methylation. Exp Cell Res 312:1989–1995

    Article  PubMed  CAS  Google Scholar 

  17. Cedar H, Solage A, Glaser G, Razin A (1979) Direct detection of methylated cytosine in DNA by use of the restriction enzyme MspI. Nucleic Acids Res 6:2125–2132

    Article  PubMed  CAS  Google Scholar 

  18. Karimi M, Johansson S, Ekstrm T (2006) Using LUMA: a Luminometric-based assay for global DNA-methylation. Epigenetics 1:45–48

    Article  PubMed  Google Scholar 

  19. Iwamoto K (2011) Neurons show distinctive DNA methylation profile and higher interindividual variations compared with non-neurons. Genome Res 21:688–696

    Article  PubMed  CAS  Google Scholar 

  20. Bjornsson H, Sigurdsson M, Fallin MD, Irizarry R, Aspelund T, Cui H, Yu W, Rongione M, Ekstrm T, Harris T, Launer L, Eiriksdottir G, Leppert M, Sapienza C, Gudnason V, Feinberg A (2008) Intra-individual change over time in DNA methylation with familial clustering. JAMA 299:2877–2883

    Article  PubMed  CAS  Google Scholar 

  21. Poage GM (2011) Global hypomethylation identifies Loci targeted for hypermethylation in head and neck cancer. Clin Cancer Res 17:3579–3589

    Article  PubMed  CAS  Google Scholar 

  22. Wu H-C (2011) Global methylation profiles in DNA from different blood cell types. Epigenetics 6:76–85

    Article  PubMed  CAS  Google Scholar 

  23. Romermann D, Hasemeier B, Metzig K, Gohring G, Schlegelberger B, Langer F, Kreipe H, Lehmann U (2008) Global increase in DNA methylation in patients with myelodysplastic syndrome. Leukemia 22:1954–1956

    Article  PubMed  CAS  Google Scholar 

  24. Kutueva LI, Ashapkin VV, Vanyushin BF (1996) The methylation pattern of a cytosine DNA-methyltransferase gene in Arabidopsis thaliana plants. Biochem Mol Biol Int 40:347–353

    PubMed  CAS  Google Scholar 

  25. Berdasco M, Esteller M (2010) Aberrant ­epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19:698–711

    Article  PubMed  CAS  Google Scholar 

  26. Dolinoy D, Weidman J, Jirtle R (2007) Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol 23:297–307

    Article  PubMed  CAS  Google Scholar 

  27. Pembrey M (1996) Imprinting and transgenerational modulation of gene expression; human growth as a model. Acta Genet Med Gemellol 45:111–125

    PubMed  CAS  Google Scholar 

  28. Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997

    Article  PubMed  CAS  Google Scholar 

  29. Grunau C, Clark S, Rosenthal A (2001) Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res 29:E65-5

    Article  PubMed  Google Scholar 

  30. Zilberman D, Henikoff S (2007) Genome-wide analysis of DNA methylation patterns. Development 134:3959–3965

    Article  PubMed  CAS  Google Scholar 

  31. Ho S-M, Tang W-Y (2007) Techniques used in studies of epigenome dysregulation due to aberrant DNA methylation: an emphasis on fetal-based adult diseases. Reprod Toxicol 23:267–282

    Article  PubMed  CAS  Google Scholar 

  32. Reed K, Poulin M, Yan L, Parissenti A (2010) Comparison of bisulfite sequencing PCR with pyrosequencing for measuring differences in DNA methylation. Anal Biochem 397:96–106

    Article  PubMed  CAS  Google Scholar 

  33. Zhang Y, Rohde C, Tierling S, Stamerjohanns H, Reinhardt R, Walter J, Jeltsch A (2009) DNA methylation analysis by bisulfite conversion, cloning, and sequencing of individual clones. Methods Mol Biol 507:177–187

    Article  PubMed  CAS  Google Scholar 

  34. Kaminen-Ahola N, Ahola A, Maga M, Mallitt K-A, Fahey P, Cox T, Whitelaw E, Chong S (2010) Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet 6:e1000811

    Article  PubMed  Google Scholar 

  35. Chen T, Zhang Y-L, Jiang Y, Liu S-Z, Schatten H, Chen D-Y, Sun Q-Y (2004) The DNA methylation events in normal and cloned rabbit embryos. FEBS Lett 578:69–72

    Article  PubMed  CAS  Google Scholar 

  36. Bock C, Reither S, Mikeska T, Paulsen M, Walter J, Lengauer T (2005) BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics 21:4067–4068

    Article  PubMed  CAS  Google Scholar 

  37. Chhibber A, Schroeder B (2008) Single-molecule polymerase chain reaction reduces bias: application to DNA methylation analysis by bisulfite sequencing. Anal Biochem 377:46–54

    Article  PubMed  CAS  Google Scholar 

  38. Fauque P, Ripoche M-A, Tost J, Journot L, Gabory A, Busato F, Le Digarcher A, Mondon F, Gut I, Jouannet P, Vaiman D, Dandolo L, Jammes H (2010) Modulation of imprinted gene network in placenta results in normal development of in vitro manipulated mouse embryos. Hum Mol Genet 19:1779–1790

    Article  PubMed  CAS  Google Scholar 

  39. Hansmann T, Heinzmann J, Wrenzycki C et al (2011) Characterization of Differentially Methylated Regions in 3 Bovine Imprinted Genes: A Model for Studying Human Germ-Cell and Embryo Development, Cytogenetic and Genome Research 132:239–247

    Google Scholar 

  40. Tost J, Gut IG (2007) DNA methylation analysis by pyrosequencing. Nat Protoc 2:2265

    Article  PubMed  CAS  Google Scholar 

  41. Potapova A, Albat C, Hasemeier B, Hauszler K, Lamprecht S, Suerbaum S, Kreipe H, Lehmann U (2011) Systematic cross-validation of 454 sequencing and pyrosequencing for the exact quantification of DNA methylation patterns with single CpG resolution. BMC Biotechnol 11:6–6

    Article  PubMed  CAS  Google Scholar 

  42. Schulte R, Missel A, Reinecke F et al (2010) PyroMark® CpG assays: a new tool for genome-wide methylation profiling by Pyrose­quencing®. Qiagen Fact Sheet. www.qiagen.com/literature/render.aspx?id=201070. Accessed 29 March 2012

  43. Song F, Mahmood S, Ghosh S, Liang P, Smiraglia D, Nagase H, Held W (2009) Tissue specific differentially methylated regions (TDMR): changes in DNA methylation during development. Genomics 93:130–139

    Article  PubMed  CAS  Google Scholar 

  44. Heijmans B, Tobi E, Stein A, Putter H, Blauw G, Susser E, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049

    Article  PubMed  CAS  Google Scholar 

  45. Nygren AOH, Dean J, Jensen T, Kruse S, Kwong W, van den Boom D, Ehrich M (2010) Quantification of fetal DNA by use of methylation-based DNA discrimination. Clin Chem 56:1627–1635

    Article  PubMed  CAS  Google Scholar 

  46. Izzi B, Decallonne B, Devriendt K, Bouillon R, Vanderschueren D, Levtchenko E, de Zegher F, Van den Bruel A, Lambrechts D, Van Geet C, Freson K (2010) A new approach to imprinting mutation detection in GNAS by Sequenom EpiTYPER system. Clin Chim Acta 411:2033–2039

    Article  PubMed  CAS  Google Scholar 

  47. Sequenom (2009) MassARRAY® quantitative methylation analysis. EpiTYPER Brochure. http://www.sequenom.com/files/genetic-analysis-files/dna-methylation-pdfs/sq189_methylation2011_web. Accessed 29 March 2012

  48. Ehrich M, Field J, Liloglou T, Xinarianos G, Oeth P, Nelson M, Cantor C, van den Boom D (2006) Cytosine methylation profiles as a molecular marker in non-small cell lung cancer. Cancer Res 66:10911–10918

    Article  PubMed  CAS  Google Scholar 

  49. Qiagen (2008) EpiTect® MethyLight PCR Handbook. www.qiagen.com/literature/render.aspx?id=103756. Accessed 29 March 2012

  50. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28:E32

    Article  PubMed  CAS  Google Scholar 

  51. Lim E, Ng S, Li J, Chang A, Ng J, Ilancheran A, Low J, Quek S, Tay E (2010) Cervical dysplasia: assessing methylation status (Methylight) of CCNA1, DAPK1, HS3ST2, PAX1 and TFPI2 to improve diagnostic accuracy. Gynecol Oncol 119:225–231

    Article  PubMed  CAS  Google Scholar 

  52. Cheng Y-W, Pincas H, Bacolod M, Schemmann G, Giardina S, Huang J, Barral S, Idrees K, Khan S, Zeng Z, Rosenberg S, Notterman D, Ott J, Paty P, Barany F (2008) CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer. Clin Cancer Res 14:6005–6013

    Article  PubMed  CAS  Google Scholar 

  53. Siegmund K, Connor C, Campan M, Long T, Weisenberger D, Biniszkiewicz D, Jaenisch R, Laird P, Akbarian S (2007) DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2:e895

    Article  PubMed  Google Scholar 

  54. Barker DJP (2007) The origins of the developmental origins theory. J Intern Med 261:412–417

    Article  PubMed  CAS  Google Scholar 

  55. Wadhwa P, Buss C, Entringer S, Swanson J (2009) Developmental origins of health and disease: brief history of the approach and ­current focus on epigenetic mechanisms. Semin Reprod Med 27:358–368

    Article  PubMed  CAS  Google Scholar 

  56. Huang Y-W, Huang THM, Wang L-S (2010) Profiling DNA methylomes from microarray to genome-scale sequencing. Technol Cancer Res Treat 9:139–147

    PubMed  CAS  Google Scholar 

  57. Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genetics 11:191–203

    Article  CAS  Google Scholar 

  58. Jones P, Baylin S (2007) The epigenomics of cancer. Cell 128:683–692

    Article  PubMed  CAS  Google Scholar 

  59. Deneberg S, Grvdal M, Karimi M, Jansson M, Nahi H, Corbacioglu A, Gaidzik V, Dhner K, Paul C, Ekstrm TJ, Hellstrm-Lindberg E, Lehmann S (2010) Gene-specific and global methylation patterns predict outcome in patients with acute myeloid leukemia. Leukemia 24:932–941

    Article  PubMed  CAS  Google Scholar 

  60. Meissner A, Mikkelsen T, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein B, Nusbaum C, Jaffe D, Gnirke A, Jaenisch R, Lander E (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770

    PubMed  CAS  Google Scholar 

  61. Ball CA, Sherlock G (2007) What are MicroArrays? An introduction to microarray methods for measuring the transcriptome. In: Barnes MR, Wiley I (eds) Bioinformatics for geneticists: a bioinformatics primer for the analysis of genetic data. Wiley, Chichester, England, pp 371–387

    Google Scholar 

  62. Bock C, Tomazou EM, Brinkman AB, Muller F, Simmer F, Gu H, Jager N, Gnirke A, Stunnenberg HG, Meissner A (2010) Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol 28:1106–1114

    Article  PubMed  CAS  Google Scholar 

  63. Hurd P, Nelson C (2009) Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief Funct Genomic Proteomic 8:174–183

    Article  PubMed  CAS  Google Scholar 

  64. Bulyk M (2006) DNA microarray technologies for measuring protein-DNA interactions. Curr Opin Biotechnol 17:422–430

    Article  PubMed  CAS  Google Scholar 

  65. Minard M, Jain A, Barton M (2009) Analysis of epigenetic alterations to chromatin during development. Genesis 47:559–572

    Article  PubMed  CAS  Google Scholar 

  66. Bernstein B, Mikkelsen T, Xie X, Kamal M, Huebert D, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber S, Lander E (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  PubMed  CAS  Google Scholar 

  67. Weber M, Davies J, Wittig D, Oakeley E, Haase M, Lam W, Schbeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    Article  PubMed  CAS  Google Scholar 

  68. Shen L, Waterland RA (2007) Methods of DNA methylation analysis. Curr Opin Clin Nutr Metab Care 10:576

    Article  PubMed  CAS  Google Scholar 

  69. Brinkman A, Stunnenberg H (2009) Strategies for epigenome analysis. In: Ferguson-Smith A, Greally J, Martienssen R (eds) Epigenomics. Springer Science  +  Business Media, New York, pp 3–18

    Chapter  Google Scholar 

  70. Weisenberger DJ, Van Den Berg D, Pan F, Berman BP, Laird PW (2008) Comprehensive DNA Methylation Analysis on the Illumina Infinium Assay Platform. Illumina Epigenetic Analysis, Illumina, In Application Note

    Google Scholar 

  71. Illumina (2008) DNA methylation analysis. In: Data sheet: epigenetics. http://www.illumina.com/Documents/products/datasheets/datasheet_dna_methylation_analysis.pdf. Accessed 29 March 2012

  72. Bibikova M, Lin Z, Zhou L, Chudin E, Garcia E, Wu B, Doucet D, Thomas N, Wang Y, Vollmer E, Goldmann T, Seifart C, Jiang W, Barker D, Chee M, Floros J, Fan J-B (2006) High-throughput DNA methylation profiling using universal bead arrays. Genome Res 16:383–393

    Article  PubMed  CAS  Google Scholar 

  73. Fan J, Gunderson K, Bibikova M, Yeakley J, Chen J, Wickham Garcia E, Lebruska L, Laurent M, Shen R, Barker D (2006) Illumina universal bead arrays. Methods Enzymol 410:57–73

    Article  PubMed  CAS  Google Scholar 

  74. Sandoval J (2011) Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6:692–702

    Article  PubMed  CAS  Google Scholar 

  75. (2010) Infinium human methylation 450 BeadChip. In: Data sheet: epigenetics. Illumina

    Google Scholar 

  76. Datta S, Datta S, Kim S, Chakraborty S, Gill R (2010) Statistical analyses of next generation sequence data: a partial overview. J Proteomics Bioinform 3:183–190

    Article  PubMed  CAS  Google Scholar 

  77. Illingworth R, Kerr A, Desousa D, Jrgensen H, Ellis P, Stalker J, Jackson D, Clee C, Plumb R, Rogers J, Humphray S, Cox T, Langford C, Bird A (2008) A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 6:e22

    Article  PubMed  Google Scholar 

  78. Bird A (2002) DNA methylation patterns and epigenetic memory, Genes & Development 16:6–21

    Article  PubMed  CAS  Google Scholar 

  79. Gregory B, Yazaki J, Ecker J (2008) Utilizing tiling microarrays for whole-genome analysis in plants. Plant J 53:636–644

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant ES017524. Support for KES and MSN was provided by an Institutional Training Grant from the National Institute of Environmental Health Sciences (NIEHS), NIH (T32 ES007062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana C. Dolinoy Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sant, K.E., Nahar, M.S., Dolinoy, D.C. (2012). DNA Methylation Screening and Analysis. In: Harris, C., Hansen, J. (eds) Developmental Toxicology. Methods in Molecular Biology, vol 889. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-867-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-867-2_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-866-5

  • Online ISBN: 978-1-61779-867-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics