Skip to main content

Use of siRNA in Dental Tissue-Derived Cell Cultures: Integrin Knockdown in Fibroblasts

  • Protocol
  • First Online:
Odontogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 887))

Abstract

Short (or small) interfering RNAs (siRNAs) are double-stranded RNA molecules about 21–25 nucleotides long that have the capacity to disrupt the activity of genes on a posttranscriptional level. This sequence homology-driven gene silencing capacity has been utilized by researchers to selectively block the translation of mRNA to proteins in order to study specific gene functions and identify target molecules. Importantly, siRNAs have the potential to be used in treatment of disease. Here, we describe how the siRNA technology can be used to knock down genes in dental tissue-derived cells using integrin α11 knockdown as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–11.

    Article  PubMed  CAS  Google Scholar 

  2. http://nobelprize.org/nobel_prizes/medicine/laureates/2006/adv.html.

  3. Montgomery, M. K., Xu, S., and Fire, A. (1998) RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci USA 95, 15502–7.

    Article  PubMed  CAS  Google Scholar 

  4. Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–6.

    Article  PubMed  CAS  Google Scholar 

  5. Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–6.

    Article  PubMed  CAS  Google Scholar 

  6. Kawamata, T., and Tomari, Y. (2010) Making RISC. Trends Biochem Sci 35, 368–76.

    Article  PubMed  CAS  Google Scholar 

  7. Hamilton, A. J., and Baulcombe, D. C. (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–2.

    Article  PubMed  CAS  Google Scholar 

  8. Pushparaj, P. N., and Melendez, A. J. (2006) Short interfering RNA (siRNA) as a novel therapeutic. Clin Exp Pharmacol Physiol 33, 504–10.

    Article  PubMed  CAS  Google Scholar 

  9. Pushparaj, P. N., Aarthi, J. J., Manikandan, J., and Kumar, S. D. (2008) siRNA, miRNA, and shRNA: in vivo applications. J Dent Res 87, 992–1003.

    Article  PubMed  CAS  Google Scholar 

  10. Barczyk, M. M., Olsen, L. H., da Franca, P., Loos, B. G., Mustafa, K., Gullberg, D., and Bolstad, A. I. (2009) A role for alpha11beta1 integrin in the human periodontal ligament. J Dent Res 88, 621–6.

    Article  PubMed  CAS  Google Scholar 

  11. Liu, Y., Arvidson, K., Atzori, L., Sundqvist, K., Silva, B., Cotgreave, I., and Grafstrom, R. C. (1991) Development of low- and high-serum culture conditions for use of human oral fibroblasts in toxicity testing of dental materials. J Dent Res 70, 1068–73.

    Article  PubMed  CAS  Google Scholar 

  12. Mustafa, K., Silva Lopez, B., Hultenby, K., Wennerberg, A., and Arvidson, K. (1998) Attachment and proliferation of human oral fibroblasts to titanium surfaces blasted with TiO2 particles. A scanning electron microscopic and histomorphometric analysis. Clin Oral Implants Res 9, 195–207.

    Article  PubMed  CAS  Google Scholar 

  13. Velling, T., Kusche-Gullberg, M., Sejersen, T., and Gullberg, D. (1999) cDNA cloning and chromosomal localization of human alpha(11) integrin. A collagen-binding, I domain-containing, beta(1)-associated integrin alpha-chain present in muscle tissues. J Biol Chem 274, 25735–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by University of Bergen, Bergen, Norway. The Research Council of Norway (183258/S10) and The Norwegian Cancer Society (536711) M.M. Barczyk is a recipient of grant from Helse Vest, Norway (project number: 911584).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Isine Bolstad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Barczyk, M.M., Gullberg, D., Bolstad, A.I. (2012). Use of siRNA in Dental Tissue-Derived Cell Cultures: Integrin Knockdown in Fibroblasts. In: Kioussi, C. (eds) Odontogenesis. Methods in Molecular Biology, vol 887. Humana Press. https://doi.org/10.1007/978-1-61779-860-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-860-3_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-859-7

  • Online ISBN: 978-1-61779-860-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics