Skip to main content

In Ovo Eye Electroporation

  • Protocol
  • First Online:
Retinal Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 884))

Abstract

Electroporation has been used successfully to introduce macromolecules such as DNA into the chick embryo for at least 15 years. Purified plasmid DNA is microinjected into embryo and then a series of low voltage electrical pulses are applied to the embryo which allows naked DNA to enter cells. Following entrance into the cytoplasm, the DNA is transported to the nucleus where it is transiently expressed. This powerful technique is useful for studies involving overexpression, misexpression, and knockdown of genes of interest at a variety of developmental timepoints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stern CD (2004) The chick embryo – past, present and future as a model system in developmental biology. Mech Dev 121: 1011–1012

    Article  PubMed  CAS  Google Scholar 

  2. De Vry J et al (2010) In vivo electroporation of the central nervous system: a non-viral approach for targeted gene delivery. Prog Neurobiol 92:227–244

    Article  PubMed  Google Scholar 

  3. Titomirov AV, Sukharev S, Kistanova E (1991) In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochem Biophys Acta 1088:131–134

    Article  PubMed  CAS  Google Scholar 

  4. Muramatsu T et al (1997) Comparison of three nonviral transfection methods for foreign gene expression in early chicken embryos in ovo. Biochem Biophys Res Commun 230:376–380

    Article  PubMed  CAS  Google Scholar 

  5. Farley EK et al (2011) Effects of in ovo electroporation on endogenous gene expression: genome-wide analysis. Neural Dev 6:17

    Article  PubMed  CAS  Google Scholar 

  6. Erkeland SJ et al (2006) Significance of murine retroviral mutagenesis for identification of disease genes in human acute myeloid leukemia. Cancer Res 66:622–626

    Article  PubMed  CAS  Google Scholar 

  7. Jaenisch R et al (1983) Expression of retroviruses during early mouse embryogenesis. Hematol Blood Transfus 28:270–274

    CAS  Google Scholar 

  8. Sato N et al (2002) Regulated gene expression in the chicken embryo by using replication-competent retroviral vectors. J Virol 76: 1980–1985

    Article  PubMed  CAS  Google Scholar 

  9. Nayak S, Herzog RW (2010) Progress and prospects: immune responses to viral vectors. Gene Ther 17:295–304

    Article  PubMed  CAS  Google Scholar 

  10. Papp Z, Babiuk LA, Baca-Estrada ME (1999) The effect of pre-existing adenovirus-specific immunity on immune responses induced by recombinant adenovirus expressing glycoprotein D of bovine herpesvirus type 1. Vaccine 17:933–943

    Article  PubMed  CAS  Google Scholar 

  11. Parr MJ et al (1998) Immune parameters affecting adenoviral vector gene therapy in the brain. J Neurovirol 4:194–203

    Article  PubMed  CAS  Google Scholar 

  12. Schulick AH et al (1997) Established immunity precludes adenovirus-mediated gene transfer in rat carotid arteries. Potential for immunosuppression and vector engineering to overcome barriers of immunity. J Clin Invest 99:209–219

    Article  PubMed  CAS  Google Scholar 

  13. McNally MM, Wahlin KJ, Canto-Soler MV (2010) Endogenous expression of ASLV viral proteins in specific pathogen free chicken embryos: relevance for the developmental biology research field. BMC Dev Biol 10. doi:10.1186/1471-213X-10-106

  14. Felgner PL et al (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84: 7413–7417

    Article  PubMed  CAS  Google Scholar 

  15. Ohnuma S et al (2002) Lipofection strategy for the study of Xenopus retinal development. Methods 28:411–419

    Article  PubMed  CAS  Google Scholar 

  16. Panagiotou T, Fisher RJ (2011) Enhanced transport capabilities via nanotechnologies: impacting bioefficacy, controlled release strategies, and novel chaperones. J Drug Deliv. doi:10.1155/2011/902403

  17. Wyber JA, Andrews J, D’Emanuele A (1997) The use of sonication for the efficient delivery of plasmid DNA into cells. Pharm Res 14: 750–756

    Article  PubMed  CAS  Google Scholar 

  18. Byun SJ et al (2011) Oviduct-specific enhanced green fluorescent protein expression in transgenic chickens. Biosci Biotechnol Biochem 75: 646–649

    Article  PubMed  CAS  Google Scholar 

  19. Heo YT et al (2011) Bone marrow cell-mediated production of transgenic chickens. Lab Invest. doi:10.1038/labinvest.2011.53

  20. Koo BC et al (2010) Tetracycline-dependent expression of the human erythropoietin gene in transgenic chickens. Transgenic Res 19:437–447

    Article  PubMed  CAS  Google Scholar 

  21. Matsubara Y et al (2011) Detection of the EGFP sequence in breast muscle of 3-year-old chicken after transfection using sonoporation. Anim Sci J 82:428–433

    Article  PubMed  CAS  Google Scholar 

  22. McGrew MJ, et al. (2010) Functional conservation between rodents and chicken of regulatory sequences driving skeletal muscle gene expression in transgenic chickens. BMC Dev Biol doi:10.1155/2011/902403

    Google Scholar 

  23. Motono M et al (2010) Production of transgenic chickens from purified primordial germ cells infected with a lentiviral vector. J Biosci Bioeng 109:315–321

    Article  PubMed  CAS  Google Scholar 

  24. Park SH et al (2010) CpG methylation modulates tissue-specific expression of a transgene in chickens. Theriogenology 74(5):805–816

    Google Scholar 

  25. Park SW, Wei LN (2003) Regulation of c-myc gene by nitric oxide via inactivating NF-kappa B complex in P19 mouse embryonal carcinoma cells. J Biol Chem 278:29776–29782

    Article  PubMed  CAS  Google Scholar 

  26. Poynter G, Huss D, Lansford R (2009) Injection of lentivirus into stage-X blastoderm for the production of transgenic quail. Cold Spring Harb Protoc 2009, pdbprot5118

    Google Scholar 

  27. Harada R et al (2008) Genome-wide location analysis and expression studies reveal a role for p110 CUX1 in the activation of DNA replication genes. Nucleic Acids Res 36:189–202

    Article  PubMed  CAS  Google Scholar 

  28. Sato M, Tanigawa M, Kikuchi N (2004) Nonviral gene transfer to surface skin of mid-gestational murine embryos by intraamniotic injection and subsequent electroporation. Mol Reprod Dev 69:268–277

    Article  PubMed  CAS  Google Scholar 

  29. Watanabe T et al (2007) Tet-on inducible system combined with in ovo electroporation dissects multiple roles of genes in somitogenesis of chicken embryos. Dev Biol 305:625–636

    Article  PubMed  CAS  Google Scholar 

  30. Yokota Y et al (2011) Genomically integrated transgenes are stably and conditionally expressed in neural crest cell-specific lineages. Dev Biol 353:382–395

    Article  PubMed  CAS  Google Scholar 

  31. Baeriswyl T, Mauti O, Stoeckli ET (2008) Temporal control of gene silencing by in ovo electroporation. Methods Mol Biol 442: 231–244

    Article  PubMed  CAS  Google Scholar 

  32. Katahira T, Nakamura H (2003) Gene silencing in chick embryos with a vector-based small interfering RNA system. Dev Growth Differ 45:361–367

    Article  PubMed  CAS  Google Scholar 

  33. Pekarik V et al (2003) Screening for gene function in chicken embryo using RNAi and electroporation. Nat Biotechnol 21:93–96

    Article  PubMed  CAS  Google Scholar 

  34. Rao M et al (2004) In vivo comparative study of RNAi methodologies by in ovo electroporation in the chick embryo. Dev Dyn 231: 592–600

    Article  PubMed  CAS  Google Scholar 

  35. Luo J, Redies C (2005) Ex ovo electroporation for gene transfer into older chicken embryos. Dev Dyn 233:1470–1477

    Article  PubMed  CAS  Google Scholar 

  36. Sakuta H, Suzuki R, Noda M (2008) Retrovirus vector-mediated gene transfer into the chick optic vesicle by in ovo electroporation. Dev Growth Differ 50:453–457

    Article  PubMed  CAS  Google Scholar 

  37. Simkin JE, McKeown SJ, Newgreen DF (2009) Focal electroporation in ovo. Dev Dyn 238: 3152–3155

    Article  PubMed  CAS  Google Scholar 

  38. Munoz Madero V, Ortega Perez G (2011) Electrochemotherapy for treatment of skin and soft tissue tumours. Update and definition of its role in multimodal therapy. Clin Transl Oncol 13:18–24

    Article  PubMed  Google Scholar 

  39. Sardesai NY, Weiner DB (2011) Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 23:421–429

    Article  PubMed  CAS  Google Scholar 

  40. Thomson KR et al (2011) Investigation of the safety of irreversible electroporation in humans. J Vasc Interv Radiol 22:611–621

    Article  PubMed  Google Scholar 

  41. Vasan S et al (2011) In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers. PLoS One. doi:10.1371

  42. Wong TW et al (2011) Painless skin electroporation as a novel way for insulin delivery. Diabetes Technol Ther 13:929–935

    Article  PubMed  CAS  Google Scholar 

  43. Hamburger V, Hamilton HL (1952) A series of normal stages in the development of the chick embryo. Dev Dyn 195:231–272

    Article  Google Scholar 

  44. Krull CE (2004) A primer on using in ovo electroporation to analyze gene function. Dev Dyn 229:433–439

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Health Assistance Foundation and NIH grants 1R01EY019525-01 and 1R15EY020816-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teri L. Belecky-Adams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Belecky-Adams, T.L., Hudson, S.R., Tiwari, S. (2012). In Ovo Eye Electroporation. In: Wang, SZ. (eds) Retinal Development. Methods in Molecular Biology, vol 884. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-848-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-848-1_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-847-4

  • Online ISBN: 978-1-61779-848-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics