Skip to main content

Exome Sequencing: Capture and Sequencing of All Human Coding Regions for Disease Gene Discovery

  • Protocol
  • First Online:
Retinal Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 884))

Abstract

In humans, protein-coding exons constitute 1.5–1.7% of the human genome. Targeted sequencing of all coding exons is termed as exome sequencing. This method enriches for coding sequences at a genome-wide scale from 3 μg of DNA in a hybridization capture. Exome analysis provides an excellent opportunity for high-throughput identification of disease-causing variations without the prior knowledge of linkage or association. A comprehensive landscape of coding variants could also offer valuable mechanistic insights into phenotypic heterogeneity and genetic epistasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stenson PD et al (2009) The human gene mutation database: 2008 update. Genome Med 1:13

    Article  PubMed  Google Scholar 

  2. Ng SB et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276

    Article  PubMed  CAS  Google Scholar 

  3. Ku CS, Naidoo N, Pawitan Y (2010) Revisiting Mendelian disorders through exome sequencing. Hum Genet 129:351–370

    Article  Google Scholar 

  4. O’Roak BJ et al (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43:585–589

    Article  PubMed  Google Scholar 

  5. Züchner S et al (2011) Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am J Hum Genet 88:201–206

    Article  PubMed  Google Scholar 

  6. Bainbridge MN et al (2010) Whole exome capture in solution with 3 Gbp of data. Genome Biol 11:R62

    Article  PubMed  Google Scholar 

  7. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed  CAS  Google Scholar 

  8. Langmead B et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  Google Scholar 

  9. Cox AJ (2007) ELAND: efficient large-scale alignment of nucleotide databases. Illumina, San Diego

    Google Scholar 

  10. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  PubMed  CAS  Google Scholar 

  11. Li H et al (2009) The sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  Google Scholar 

  12. Li Y et al (2011) Low-coverage sequencing: implications for design of complex trait association studies. Genome Res 21:940–951

    Article  PubMed  CAS  Google Scholar 

  13. McKenna A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  PubMed  CAS  Google Scholar 

  14. DePristo M et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Na Genet 43:491–498

    Article  CAS  Google Scholar 

  15. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18:1851–1858

    Article  PubMed  CAS  Google Scholar 

  16. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from next-generation sequencing data. Nucleic Acids Res 38:e164

    Article  PubMed  Google Scholar 

  17. Robinson JT et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  PubMed  CAS  Google Scholar 

  18. Fujita PA et al (2011) The UCSC genome browser database: update 2011. Nucleic Acids Res 39:D876–D882

    Article  PubMed  Google Scholar 

  19. Bentley DR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  PubMed  CAS  Google Scholar 

Web Resources/URLs

Download references

Acknowledgment

The authors are supported by Intramural Research Program of the National Eye Institute, National Institutes of Health, Bethesda, MD, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Swaroop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Priya, R.R., Rajasimha, H.K., Brooks, M.J., Swaroop, A. (2012). Exome Sequencing: Capture and Sequencing of All Human Coding Regions for Disease Gene Discovery. In: Wang, SZ. (eds) Retinal Development. Methods in Molecular Biology, vol 884. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-848-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-848-1_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-847-4

  • Online ISBN: 978-1-61779-848-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics