Skip to main content

Revealing Looping Organization of Mammalian Photoreceptor Genes Using Chromosome Conformation Capture (3C) Assays

  • Protocol
  • First Online:
Retinal Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 884))

  • 2113 Accesses

Abstract

Chromosome conformation capture (3C) is a biochemical assay to reveal higher order chromosomal organizations mediated by physical contact between discrete DNA segments in vivo. Chromosomal organizations are involved in transcriptional regulation of a number of genes in various cell types. We have adapted 3C for analyzing the intrachromosomal looping organization of rod and cone photoreceptor genes in the mammalian retina. Here, we describe a detailed protocol for 3C assays on whole mouse retinas. Using the M-cone opsin gene as an example, we demonstrate how to genetically distinguish 3C signals from cones versus rods in retinal 3C assays. We also describe the challenges and key points of 3C design and performance as well as appropriate controls and result interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311

    Article  PubMed  CAS  Google Scholar 

  2. Hagege H et al (2007) Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2:1722–1733

    Article  PubMed  CAS  Google Scholar 

  3. Vassetzky Y et al (2009) Chromosome conformation capture (from 3C to 5C) and its ChIP-based modification. Methods Mol Biol 567:171–188

    Article  PubMed  Google Scholar 

  4. Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10:1453–1465

    Article  PubMed  CAS  Google Scholar 

  5. Carter D, Chakalova L, Osborne CS, Dai YF, Fraser P (2002) Long-range chromatin regulatory interactions in vivo. Nat Genet 32:623–626

    Article  PubMed  CAS  Google Scholar 

  6. Palstra RJ et al (2003) The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 35:190–194

    Article  PubMed  CAS  Google Scholar 

  7. Eivazova ER, Aune TM (2004) Dynamic alterations in the conformation of the Ifng gene region during T helper cell differentiation. Proc Natl Acad Sci USA 101:251–256

    Article  PubMed  CAS  Google Scholar 

  8. Eivazova ER, Vassetzky YS, Aune TM (2007) Selective matrix attachment regions in T helper cell subsets support loop conformation in the Ifng gene. Genes Immun 8:35–43

    Article  PubMed  CAS  Google Scholar 

  9. Liu Z, Garrard WT (2005) Long-range interactions between three transcriptional enhancers, active Vkappa gene promoters, and a 3′ boundary sequence spanning 46 kilobases. Mol Cell Biol 25:3220–3231

    Article  PubMed  CAS  Google Scholar 

  10. Liu Z, Ma Z, Terada LS, Garrard WT (2009) Divergent roles of RelA and c-Rel in establishing chromosomal loops upon activation of the Igkappa gene. J Immunol 183:3819–3830

    Article  PubMed  CAS  Google Scholar 

  11. Murrell A, Heeson S, Reik W (2004) Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet 36:889–893

    Article  PubMed  CAS  Google Scholar 

  12. Spilianakis CG, Flavell RA (2004) Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol 5:1017–1027

    Article  PubMed  CAS  Google Scholar 

  13. Zhou GL et al (2006) Active chromatin hub of the mouse alpha-globin locus forms in a transcription factory of clustered housekeeping genes. Mol Cell Biol 26:5096–5105

    Article  PubMed  CAS  Google Scholar 

  14. Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37:31–40

    Article  PubMed  CAS  Google Scholar 

  15. Akimoto M et al (2006) Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow-sorted photoreceptors. Proc Natl Acad Sci USA 103:3890–3895

    Article  PubMed  CAS  Google Scholar 

  16. van Beijnum JR, Rousch M, Castermans K, van der Linden E, Griffioen AW (2008) Isolation of endothelial cells from fresh tissues. Nat Protoc 3:1085–1091

    Article  PubMed  Google Scholar 

  17. Furukawa T, Morrow EM, Li T, Davis FC, Cepko CL (1999) Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat Genet 23:466–470

    Article  PubMed  CAS  Google Scholar 

  18. Chen J, Rattner A, Nathans J (2005) The rod photoreceptor-specific nuclear receptor Nr2e3 represses transcription of multiple cone-specific genes. J Neurosci 25:118–129

    Article  PubMed  CAS  Google Scholar 

  19. Corbo JC, Cepko CL (2005) A hybrid photoreceptor expressing both rod and cone genes in a mouse model of enhanced S-cone syndrome. PLoS Genet 1:e11

    Article  PubMed  Google Scholar 

  20. Peng GH, Ahmad O, Ahmad F, Liu J, Chen S (2005) The photoreceptor-specific nuclear receptor Nr2e3 interacts with Crx and exerts opposing effects on the transcription of rod versus cone genes. Hum Mol Genet 14:747–764

    Article  PubMed  CAS  Google Scholar 

  21. Peng GH, Chen S (2011) Active opsin loci adopt intrachromosomal loops that depend on the photoreceptor transcription factor ­network. Proc Natl Acad Sci USA. 108:17821–17826

    Google Scholar 

  22. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Anand Swaroop and Dr. Connie Cepko for providing Nrl −/− and Crx −/− mice, Hui Wang for technical assistance, and Anne Hennig for critical reading of the manuscript. This work was supported by NIH EY012543 (to SC), NIH EY02687 (to WU-DOVS), Lew Wasserman Merit Award (to SC), and unrestricted fund from Research to Prevent Blindness (to WU-DOVS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiming Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Peng, GH., Chen, S. (2012). Revealing Looping Organization of Mammalian Photoreceptor Genes Using Chromosome Conformation Capture (3C) Assays. In: Wang, SZ. (eds) Retinal Development. Methods in Molecular Biology, vol 884. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-848-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-848-1_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-847-4

  • Online ISBN: 978-1-61779-848-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics