Skip to main content

New Virus Discovery by Deep Sequencing of Small RNAs

  • Protocol
  • First Online:
RNA Abundance Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 883))

Abstract

Small RNAs (sRNAs) have emerged as one of the most important regulators of gene expression in eukaryotes. sRNAs are intermediate molecules as well as end products in the antiviral defense pathway called RNA interference in plants and animals. Profiling of sRNAs using next-generation sequencing technologies has identified a number of plant viruses that have never been reported previously, and has provided a deeper view of virus populations in a plant that cannot be achieved by conventional methods like PCR and ELISA. In this chapter, we describe the methodology of deep sequencing of sRNAs. The high-throughput and highly sensitive method will revolutionize the identification of plant viruses and the study of molecular plant–virus interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones R (2006) RNA silencing sheds light on the RNA world. PLoS Biol 4:e448

    Article  PubMed  Google Scholar 

  2. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can upregulate translation. Science 318:1931–1934

    Article  PubMed  CAS  Google Scholar 

  3. Wang XB, Jovel J, Udomporn P, Wang X, Wu Q, Li WX, Gasciolli V, Vaucheret H, Ding SW (2011) The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant Cell 23:1625–1638

    Article  PubMed  CAS  Google Scholar 

  4. Almeida R, Allshire RC (2005) RNA silencing and genome regulation. Trends Cell Biol 15:251–258

    Article  PubMed  CAS  Google Scholar 

  5. Tomari Y, Zamore PD (2005) Perspective: machines for RNAi. Genes Dev 19:517–529

    Article  PubMed  CAS  Google Scholar 

  6. Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896

    Article  PubMed  CAS  Google Scholar 

  7. Chen X (2010) Small RNAs―secrets and surprises of the genome. Plant J 61:941–958

    Article  PubMed  CAS  Google Scholar 

  8. Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing associated small RNAs in plants. Plant Cell 14:1605–1619

    Article  PubMed  CAS  Google Scholar 

  9. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  PubMed  CAS  Google Scholar 

  10. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  Google Scholar 

  11. Szittya G, Moxon S, Santos DM, Jing R, Fevereiro MP, Moulton V, Dalmay T (2008) High throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 9:593

    Article  PubMed  Google Scholar 

  12. Zhao CZ, Xia H, Frazier TP, Yao YY, Bi YP, Li AQ, Li MJ, Li CS, Zhang BH, Wang XJ (2010) Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol 10:3

    Article  PubMed  Google Scholar 

  13. Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    Article  PubMed  CAS  Google Scholar 

  14. Mlotshwa S, Pruss GJ, Vance V (2008) Small RNAs in viral infection and host defense. Trends Plant Sci 13:375–382

    Article  PubMed  CAS  Google Scholar 

  15. Donaire L, Wany Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, Llave C (2009) Deep sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203–214

    Article  PubMed  CAS  Google Scholar 

  16. Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, Barker I, Simon R (2009) Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method diagnosis, discovery and sequencing of viruses. Virology 388:1–7

    Article  PubMed  CAS  Google Scholar 

  17. Rwahnih MA, Daubert S, Golino D, Rowhani A (2009) Deep sequencing analysis of RNAs from a grapevine showing syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 387:395–401

    Article  PubMed  Google Scholar 

  18. Carra A, Mica E, Gambino G, Pindo M, Moser C, Pè ME, Schubert A (2009) Cloning and characterization of small non-coding RNAs from grape. Plant J 59:750–763

    Article  PubMed  CAS  Google Scholar 

  19. Zhang Y, Singh K, Kaur R, Qiu W (2011) Association of a novel DNA virus with the grapevine vein-clearing and vine decline syndrome. Phytopathology. doi:10.1094/PHYTO-02-11-0034

    Google Scholar 

  20. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  21. Ghawana S, Paul A, Kumar H, Kumar A, Singh H, Bhardwaj PK, Rani A, Singh RS, Raizada J, Singh K, Kumar S (2011) An RNA isolation system for plant tissues rich in secondary metabolites. BMC Res Notes 4:85

    Article  PubMed  CAS  Google Scholar 

  22. Hafner M, Landgraf P, Ludwig J, Rice A, Ojo T, Lin C, Tuschl T (2008) Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44:3–12

    Article  PubMed  CAS  Google Scholar 

  23. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  24. Warren RL, Sutton GG, Jones SJM, Holt RA (2007) Assembling millions of short DNA sequences using SSAKE. Bioinformatics 23:500–501

    Article  PubMed  CAS  Google Scholar 

  25. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashmir Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Singh, K., Kaur, R., Qiu, W. (2012). New Virus Discovery by Deep Sequencing of Small RNAs. In: Jin, H., Gassmann, W. (eds) RNA Abundance Analysis. Methods in Molecular Biology, vol 883. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-839-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-839-9_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-838-2

  • Online ISBN: 978-1-61779-839-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics