Skip to main content

Modeling miRNA Regulation in Cancer Signaling Systems: miR-34a Regulation of the p53/Sirt1 Signaling Module

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 880))

Abstract

MicroRNAs (miRNAs) are a family of small regulatory RNAs whose function is to regulate the activity and stability of specific messenger RNA targets through posttranscriptional regulatory mechanisms. Most of the times signaling systems involving miRNA modulation are not linear pathways in which a certain transcription factor activate the expression of miRNAs that posttranscriptionally represses targeting proteins, but complex regulatory structures involving a variety of feedback-loop architectures.

In this book chapter, we define, discuss, and apply a Systems Biology approach to investigate dynamical features of miRNA regulation, based on the integration of experimental evidences, hypotheses, and quantitative data through mathematical modeling. We further illustrate the approach using as case study the signaling module composed by the proteins p53, Sirt1, and the regulatory miRNA miR-34a. The model was used not only to investigate different possible designs of the silencing mechanism exerted by miR-34a on Sirt1 but also to simulate the dynamics of the system under conditions of (pathological) deregulation of its compounds.

Olaf Wolkenhauer and Julio Vera contributed equally.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nelson DE, Ihekwaba AEC, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, Edwards SW, McDowell HP, Unitt JF, Sullivan E, Grimley R, Benson N, Broomhead D, Kell DB, White MRH (2004) Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 306:704–708

    Article  PubMed  CAS  Google Scholar 

  2. Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB (2008) MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci U S A 105:19678–19683

    Article  PubMed  CAS  Google Scholar 

  3. Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA, Pasquinelli AE, Shiekhattar R (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447:823–828

    Article  PubMed  CAS  Google Scholar 

  4. Zhao W, Kruse J-P, Tang Y, Jung SY, Qin J, Gu W (2008) Negative regulation of the deacetylase SIRT1 by DBC1. Nature 451:587–590

    Article  PubMed  CAS  Google Scholar 

  5. Bueno MJ, Pérez de Castro I, Malumbres M (2008) Control of cell proliferation pathways by microRNAs. Cell Cycle 7:3143–3148

    Article  PubMed  CAS  Google Scholar 

  6. Khanin R, Vinciotti V (2008) Computational modeling of post-transcriptional gene regulation by microRNAs. J Comput Biol 15:305–316

    Article  PubMed  CAS  Google Scholar 

  7. Nissan T, Parker R (2008) Computational analysis of miRNA-mediated repression of translation: implications for models of translation initiation inhibition. RNA 14:1480–1491

    Article  PubMed  CAS  Google Scholar 

  8. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  PubMed  CAS  Google Scholar 

  9. Seitz H (2009) Redefining microRNA targets. Curr Biol 19:870–873

    Article  PubMed  CAS  Google Scholar 

  10. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    Article  PubMed  CAS  Google Scholar 

  11. Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M (2008) MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 18:549–557

    Article  PubMed  CAS  Google Scholar 

  12. Akao Y, Nakagawa Y, Naoe T (2006) let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29:903–906

    Article  PubMed  CAS  Google Scholar 

  13. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    Article  PubMed  CAS  Google Scholar 

  14. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  PubMed  CAS  Google Scholar 

  15. Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  PubMed  CAS  Google Scholar 

  16. Shalgi R, Lieber D, Oren M, Pilpel Y (2007) Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol 3:e131

    Article  PubMed  Google Scholar 

  17. Brosh R, Shalgi R, Liran A, Landan G, Korotayev K, Nguyen GH, Enerly E, Johnsen H, Buganim Y, Solomon H, Goldstein I, Madar S, Goldfinger N, Børresen-Dale A-L, Ginsberg D, Harris CC, Pilpel Y, Oren M, Rotter V (2008) p53-Repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol Syst Biol 4:229

    Article  PubMed  Google Scholar 

  18. Vera J, Wolkenhauer O (2008) A system biology approach to understand functional activity of cell communication systems. Methods Cell Biol 90:399–415

    Article  PubMed  CAS  Google Scholar 

  19. Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412

    Article  PubMed  CAS  Google Scholar 

  20. Rodier F, Campisi J, Bhaumik D (2007) Two faces of p53: aging and tumor suppression. Nucleic Acids Res 35:7475–7484

    Article  PubMed  CAS  Google Scholar 

  21. Chang T-C, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752

    Article  PubMed  CAS  Google Scholar 

  22. Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 105:13421–13426

    Article  PubMed  CAS  Google Scholar 

  23. Kim E-J, Kho J-H, Kang M-R, Um S-J (2007) Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 28:277–290

    Article  PubMed  CAS  Google Scholar 

  24. Balsa-Canto E, Alonso AA, Banga JR (2008) Computational procedures for optimal experimental design in biological systems. IET Syst Biol 2:163–172

    Article  PubMed  CAS  Google Scholar 

  25. Banga JR, Balsa-Canto E (2008) Parameter estimation and optimal experimental design. Essays Biochem 45:195–209

    Article  PubMed  CAS  Google Scholar 

  26. Vera J, Balsa-Canto E, Wellstead P, Banga JR, Wolkenhauer O (2007) Power-law models of signal transduction pathways. Cell Signal 19:1531–1541

    Article  PubMed  CAS  Google Scholar 

  27. Kopelman R (1988) Fractal reaction kinetics. Science 241:1620–1626

    Article  PubMed  CAS  Google Scholar 

  28. Savageau MA (1998) Development of fractal kinetic theory for enzyme-catalysed reactions and implications for the design of biochemical pathways. BioSystems 47:9–36

    Article  PubMed  CAS  Google Scholar 

  29. Alvarez-Vasquez F, Sims KJ, Cowart LA, Okamoto Y, Voit EO, Hannun YA (2005) Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae. Nature 433:425–430

    Article  PubMed  CAS  Google Scholar 

  30. Domijan M, Kirkilionis M (2009) Bistability and oscillations in chemical reaction networks. J Math Biol 59:467–501

    Article  PubMed  Google Scholar 

  31. Vera J, Bachmann J, Pfeifer AC, Becker V, Hormiga JA, Darias NVT, Timmer J, Klingmüller U, Wolkenhauer O (2008) A systems biology approach to analyse amplification in the JAK2-STAT5 signalling pathway. BMC Syst Biol 2:38

    Article  PubMed  Google Scholar 

  32. Vera J, Schultz J, Ibrahim S, Raatz Y, Wolkenhauer O, Kunz M (2010) Dynamical effects of epigenetic silencing of 14-3-3sigma expression. Mol Biosyst 6:264–273

    Article  PubMed  CAS  Google Scholar 

  33. Atkinson MR, Savageau MA, Myers JT, Ninfa AJ (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113:597–607

    Article  PubMed  CAS  Google Scholar 

  34. Ford J, Ahmed S, Allison S, Jiang M, Milner J (2008) JNK2-dependent regulation of SIRT1 protein stability. Cell Cycle 7:3091–3097

    Article  PubMed  CAS  Google Scholar 

  35. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature 460:529–533

    Article  PubMed  CAS  Google Scholar 

  36. Schmidt H, Jirstrand M (2006) Systems Biology Toolbox for MATLAB: a computational platform for research in systems biology. Bioinformatics 22:514–515

    Article  PubMed  CAS  Google Scholar 

  37. Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268:2764–2772

    Article  PubMed  CAS  Google Scholar 

  38. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159

    Article  PubMed  CAS  Google Scholar 

  39. Yamakuchi M, Lowenstein CJ (2009) MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle 8:712–715

    Article  PubMed  CAS  Google Scholar 

  40. Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, Deguchi T, Ito M (2008) Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun 377:114–119

    Article  PubMed  CAS  Google Scholar 

  41. Kato M, Paranjape T, Müller RU, Ullrich R, Nallur S, Gillespie E, Keane K, Esquela-Kerscher A, Weidhaas JB, Slack FJ (2009) The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene 28:2419–2424

    Article  PubMed  CAS  Google Scholar 

  42. Cha EJ, Noh SJ, Kwon KS, Kim CY, Park B-H, Park HS, Lee H, Chung MJ, Kang MJ, Lee DG, Moon WS, Jang KY (2009) Expression of DBC1 and SIRT1 is associated with poor prognosis of gastric carcinoma. Clin Cancer Res 15:4453–4459

    Article  PubMed  CAS  Google Scholar 

  43. Kim J-E, Chen J, Lou Z (2008) DBC1 is a negative regulator of SIRT1. Nature 451:583–586

    Article  PubMed  CAS  Google Scholar 

  44. Kwon H-S, Ott M (2008) The ups and downs of SIRT1. Trends Biochem Sci 33:517–525

    Article  PubMed  CAS  Google Scholar 

  45. Li Z, Chen L, Kabra N, Wang C, Fang J, Chen J (2009) Inhibition of SUV39H1 methyltransferase activity by DBC1. J Biol Chem 284:10361–10366

    Article  PubMed  CAS  Google Scholar 

  46. Ramalingam S, Honkanen P, Young L, Shimura T, Austin J, Steeg PS, Nishizuka S (2007) Quantitative assessment of the p53-Mdm2 feedback loop using protein lysate microarrays. Cancer Res 67:6247–6252

    Article  PubMed  CAS  Google Scholar 

  47. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  48. Nikolov S, Vera J, Schmitz U, Wolkenhauer O (2011) A model-based strategy to investigate the role of microRNA regulation in cancer signalling networks. Theory Biosci 130:55–69

    Article  PubMed  CAS  Google Scholar 

  49. Vera J, Nikolov S, Lai X, Singh A, Wolkenhauer O (2011) A model-based investigation of the transcriptional activity of p53 and its feedback loop regulation via 14-3-3sigma. IET Syst Biol 5:293–307

    Google Scholar 

Download references

Acknowledgments

J.V. and X.L. are funded by the German Federal Ministry of Education and Research (BMBF) as part of the project CALSYS-FORSYS under contract 0315264 (www.sbi.uni-rostock.de/calsys). O.W. was supported by the Helmholtz Foundation as part of the Systems Biology Network.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olaf Wolkenhauer or Julio Vera .

Editor information

Editors and Affiliations

Appendix

Appendix

Table A1 Parameter intervals and values. Top: Estimation intervals for corresponding parameters. Bottom: The parameter values used in the model. The values of kinetic orders (g i ) are fixed and other parameters are estimated. Values and intervals with stars: they are characterized by using biological protein half life. Others are estimated from the published experimental data (22, 34, 35)
Table A2 Expanded equations of four hypothetical miR-34a silencing mechanisms
Fig. A1.
figure 1

Interpolation fitting plot of the experimental data regarding the dynamics of DNA damage. Solid line: Model simulation. Square marker: Experimental data.

Fig. A2.
figure 2

The predictions of different miRNA silencing mechanism. Here we only illustrate the plots of mode 1 and mode 4. Solid lines: The model predictions for the protein (upper line) and mRNA (lower line) of Sirt1. Square markers: Experimental data for the protein (upper square) and mRNA (lower square) of Sirt1.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lai, X., Wolkenhauer, O., Vera, J. (2012). Modeling miRNA Regulation in Cancer Signaling Systems: miR-34a Regulation of the p53/Sirt1 Signaling Module. In: Liu, X., Betterton, M. (eds) Computational Modeling of Signaling Networks. Methods in Molecular Biology, vol 880. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-833-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-833-7_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-832-0

  • Online ISBN: 978-1-61779-833-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics