Skip to main content

Modeling Spatiotemporal Dynamics of Bacterial Populations

  • Protocol
  • First Online:
Computational Modeling of Signaling Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 880))

  • 2419 Accesses

Abstract

Quantitative modeling of spatiotemporal dynamics of cells facilitates understanding and engineering of biological systems. Using a synthetic bacterial ecosystem as a workbench, we present the approach to mathematically simulate the spatiotemporal population dynamics of the ecosystem. A description of ecosystem’s genetic construction and model development is firstly given. Parameter estimation and computational approach for the derived partial differential equations (PDEs) are then given. Spatiotemporal pattern formation is computed by numerically solving the PDE model. Biodiversity of the ecosystem and its impacts by cellular seeding distance and motility are computed according to the cell distribution patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  2. Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8:1195–1203

    Article  PubMed  CAS  Google Scholar 

  3. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev 7:165–176

    Article  CAS  Google Scholar 

  4. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231

    Article  PubMed  CAS  Google Scholar 

  5. Yao G, Lee TJ, Mori S, Nevins JR, You L (2008) A bistable Rb-E2F switch underlies the restriction point. Nat Cell Biol 10:476–482

    Article  PubMed  CAS  Google Scholar 

  6. Song H, Smolen P, Av-Ron E, Baxter DA, Byrne JH (2006) Bifurcation and singularity analysis of a molecular network for the induction of long-term memory. Biophys J 90:2309–2325

    Article  PubMed  CAS  Google Scholar 

  7. Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381–387

    Article  PubMed  CAS  Google Scholar 

  8. Roenneberg T, Chua EJ, Bernardo R, Mendoza E (2008) Modelling biological rhythms. Curr Biol 18:R826–R835

    Article  PubMed  CAS  Google Scholar 

  9. Iglesias PA, Devreotes PN (2008) Navigating through models of chemotaxis. Curr Opin Cell Biol 20:35–40

    Article  PubMed  CAS  Google Scholar 

  10. Levchenko A, Iglesias PA (2002) Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys J 82:50–63

    Article  PubMed  CAS  Google Scholar 

  11. Onsum MD, Rao CV (2009) Calling heads from tails: the role of mathematical modeling in understanding cell polarization. Curr Opin Cell Biol 21:74–81

    Article  PubMed  CAS  Google Scholar 

  12. Shvartsman SY, Coppey M, Berezhkovskii AM (2008) Dynamics of maternal morphogen gradients in Drosophila. Curr Opin Genet Dev 18:342–347

    Article  PubMed  CAS  Google Scholar 

  13. Umulis D, O’Connor MB, Othmer HG (2008) Robustness of embryonic spatial patterning in Drosophila melanogaster. Curr Top Dev Biol 81:65–111

    Article  PubMed  Google Scholar 

  14. Koch AJ, Meinhardt H (1994) Biological pattern formation: from basic mechanisms to complex structures. Rev Mod Phys 66:1481–1507

    Article  Google Scholar 

  15. Kholodenko BN (2009) Spatially distributed cell signalling. FEBS Lett 583:4006–4012

    Article  PubMed  CAS  Google Scholar 

  16. Neves SR, Iyengar R (2009) Models of spatially restricted biochemical reaction systems. J Biol Chem 284:5445–5449

    Article  PubMed  CAS  Google Scholar 

  17. Neves SR, Tsokas P, Sarkar A, Grace EA, Rangamani P, Taubenfeld SM, Alberini CM, Schaff JC, Blitzer RD, Moraru II, Iyengar R (2008) Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell 133:666–680

    Article  PubMed  CAS  Google Scholar 

  18. Freeman M (2000) Feedback control of intercellular signalling in development. Nature 408:313–319

    Article  PubMed  CAS  Google Scholar 

  19. Edelstein-Keshet L (1988) Mathematical models in biology. McGraw-Hill Companies

    Google Scholar 

  20. Birtwistle MR, Kholodenko BN (2009) Endocytosis and signalling: a meeting with mathematics. Mol Oncol 3:308–320

    Article  PubMed  CAS  Google Scholar 

  21. Bird RB, Stewart WE, Lightfoot EN (2001) Transport phenomena, 2nd edn. Wiley

    Google Scholar 

  22. Balagadde FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, Quake SR, You L (2008) A synthetic Escherichia coli predator-prey ecosystem. Mol Syst Biol 4:187

    Article  PubMed  Google Scholar 

  23. Reeves GT, Muratov CB, Schupbach T, Shvartsman SY (2006) Quantitative models of developmental pattern formation. Dev Cell 11:289–300

    Article  PubMed  CAS  Google Scholar 

  24. Camilli A, Bassler BL (2006) Bacterial small- molecule signaling pathways. Science 311:1113–1116

    Article  PubMed  CAS  Google Scholar 

  25. Taylor RJ (1984) Predation. Chapman and Hall Ltd, New York, NY

    Google Scholar 

  26. Morton KW, Mayers DF (2005) Numerical solution of partial differential equations: an introduction, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  27. Slepchenko BM, Schaff JC, Macara I, Loew LM (2003) Quantitative cell biology with the Virtual Cell. Trends Cell Biol 13:570–576

    Article  PubMed  CAS  Google Scholar 

  28. van Schijndel J (2008) Integrated modeling using MatLab, Simulink and COMSOL: with heat, air and moisture applications for building physics and systems. VDM Verlag Dr. Müller

    Google Scholar 

  29. Zimmerman WBJ (2006) Multiphysics modeling with finite element methods. World Scientific Publishing Company

    Google Scholar 

  30. Ford RM, Lauffenburger DA (1991) Analysis of chemotactic bacterial distributions in population migration assays using a mathematical model applicable to steep or shallow attractant gradients. Bull Math Biol 53:721–749

    PubMed  CAS  Google Scholar 

  31. Lauffenburger DA (1991) Quantative studies of bacterial chemotaxis and microbial population dynamics. Microb Ecol 22:175–185

    Article  Google Scholar 

  32. Woodward DE, Tyson R, Myerscough MR, Murray JD, Budrene EO, Berg HC (1995) Spatio-temporal patterns generated by Salmonella typhimurium. Biophys J 68:2181–2189

    Article  PubMed  CAS  Google Scholar 

  33. Murray JD (2005) Mathematical biology, vol 2. Oxford University Press

    Google Scholar 

  34. Peet R (1974) The measurement of species diversity. Annu Rev Ecol Syst 5:285–307

    Article  Google Scholar 

  35. Song H, Payne S, Gray M, You L (2009) Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem. Nat Chem Biol 5:929–935

    Article  PubMed  CAS  Google Scholar 

  36. Collins CH, Leadbetter JR, Arnold FH (2006) Dual selection enhances the signaling specificity of a variant of the quorum-sensing transcriptional activator LuxR. Nat Biotechnol 24:708–712

    Article  PubMed  CAS  Google Scholar 

  37. Keller EF, Segel LA (1971) Traveling bands of chemotactic bacteria: a theoretical analysis. J Theor Biol 30:235–248

    Article  PubMed  CAS  Google Scholar 

  38. Kaufmann GF, Sartorio R, Lee SH, Rogers CJ, Meijler MM, Moss JA, Clapham B, Brogan AP, Dickerson TJ, Janda KD (2005) Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc Natl Acad Sci USA 102:309–314

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Startup Grant (H.S.), AcRF TIER 1 Grant (H.S.), the National Institute of Health (5R01CA118486, L.Y.), a David and Lucile Packard Fellowship (L.Y.), and a DuPont Young Professor Award (L.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Song, H., You, L. (2012). Modeling Spatiotemporal Dynamics of Bacterial Populations. In: Liu, X., Betterton, M. (eds) Computational Modeling of Signaling Networks. Methods in Molecular Biology, vol 880. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-833-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-833-7_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-832-0

  • Online ISBN: 978-1-61779-833-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics