Skip to main content

Computational Modeling of Signal Transduction Networks: A Pedagogical Exposition

  • Protocol
  • First Online:
Computational Modeling of Signaling Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 880))

Abstract

We give a pedagogical introduction to computational modeling of signal transduction networks, starting from explaining the representations of chemical reactions by differential equations via the law of mass action. We discuss elementary biochemical reactions such as Michaelis–Menten enzyme kinetics and cooperative binding, and show how these allow the representation of large networks as systems of differential equations. We discuss the importance of looking for simpler or reduced models, such as network motifs or dynamical motifs within the larger network, and describe methods to obtain qualitative behavior by bifurcation analysis, using freely available continuation software. We then discuss stochastic kinetics and show how to implement easy-to-use methods of rule-based modeling for stochastic simulations. We finally suggest some methods for comprehensive parameter sensitivity analysis, and discuss the insights that it could yield. Examples, including code to try out, are provided based on a paper that modeled Ras kinetics in thymocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prasad A, Zikherman J, Das J, Roose JP, Weiss A, Chakraborty AK (2009) Origin of the sharp boundary that discriminates positive and negative selection of thymocytes. Proc Natl Acad Sci U S A 106(2):528–533

    Article  PubMed  CAS  Google Scholar 

  2. Das J, Ho M, Zikherman J, Govern C, Yang M, Weiss A, Chakraborty AK, Roose JP (2009) Digital signaling and hysteresis characterize ras activation in lymphoid cells. Cell 136(2):337–351

    Article  PubMed  CAS  Google Scholar 

  3. Barlow HB, Levick WR, Yoon M (1971) Responses to single quanta of light in retinal ganglion cells of the cat. Vision Res Suppl 3:87–101

    Article  Google Scholar 

  4. MM Davis, Krogsgaard M, Huse M, Huppa J, Lillemeier BF, Li QJ (2007) T cells as a self-referential, sensory organ. Annu Rev Immunol 25:681–695

    Article  PubMed  CAS  Google Scholar 

  5. Wylie DC, Das J, Chakraborty AK (2007) Sensitivity of t cells to antigen and antagonism emerges from differential regulation of the same molecular signaling module. Proc Natl Acad Sci U S A 104(13):5533–5538

    Article  PubMed  CAS  Google Scholar 

  6. Daniels MA, Teixeiro E, Gill J, Hausmann B, Roubaty D, Holmberg K, Werlen G, Hollander GA, Gascoigne NR, Palmer E (2006) Thymic selection threshold defined by compartmentalization of ras/mapk signalling. Nature 444(7120):724–729

    Article  PubMed  CAS  Google Scholar 

  7. McCaughtry TM, Wilken MS, Hogquist KA (2007) Thymic emigration revisited. J Exp Med 204(11):2513–2520

    Article  PubMed  CAS  Google Scholar 

  8. Starr TK, Jameson SC, Hogquist KA (2003) Positive and negative selection of t cells. Annu Rev Immunol 21:139–176

    Article  PubMed  CAS  Google Scholar 

  9. Werlen G, Hausmann B, Naeher D, Palmer E (2003) Signaling life and death in the thymus: timing is everything. Science 299(5614): 1859–1863

    Article  PubMed  CAS  Google Scholar 

  10. Savageau MA (1998) Development of fractal kinetic theory for enzyme-catalysed reactions and implications for the design of biochemical pathways. Biosystems 47(1–2):9–36

    Article  PubMed  CAS  Google Scholar 

  11. Schmierer B, Hill CS (2005) Kinetic analysis of smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of smads. Mol Cell Biol 25(22):9845–9858

    Article  PubMed  CAS  Google Scholar 

  12. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in escherichia coli. Nature 403(6767):339–342

    Article  PubMed  CAS  Google Scholar 

  13. Artyomov MN, Das J, Kardar M, Chakraborty AK (2007) Purely stochastic binary decisions in cell signaling models without underlying deterministic bistabilities. Proc Natl Acad Sci USA 104(48):18958–18963

    Article  PubMed  CAS  Google Scholar 

  14. To T-L, Maheshri N (2010) Noise can induce bimodality in positive transcriptional feedback loops without bistability. Science 327(5969):1142–1145

    Article  PubMed  CAS  Google Scholar 

  15. Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55

    Google Scholar 

  16. Savageau MA, Coelho PMBM, Fasani RA, Tolla DA, Salvador A (2009) Phenotypes and tolerances in the design space of biochemical systems. Proc Natl Acad Sci USA 106(16):6435–6440

    Article  PubMed  CAS  Google Scholar 

  17. Craciun G, Tang Y, Feinberg M (2006) Understanding bistability in complex enzyme-driven reaction networks. Proc Natl Acad Sci USA 103(23):8697–8702

    Article  PubMed  CAS  Google Scholar 

  18. Angeli D, Ferrell JE, Sontag ED (2004) Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci USA 101(7):1822–1827

    Article  PubMed  CAS  Google Scholar 

  19. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461

    Article  PubMed  CAS  Google Scholar 

  20. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science, 298(5594):824–827

    Article  PubMed  CAS  Google Scholar 

  21. Sondermann H, Soisson SM, Boykevisch S, Yang SS, Bar-Sagi D, Kuriyan J (2004) Structural analysis of autoinhibition in the ras activator son of sevenless. Cell 119(3):393–405

    Article  PubMed  CAS  Google Scholar 

  22. Freedman TS, Sondermann H, Friedland GD, Kortemme T, Bar-Sagi D, Marqusee S, Kuriyan J (2006) A ras-induced conformational switch in the ras activator son of sevenless. Proc Natl Acad Sci U S A 103(45):16692–16697

    Article  PubMed  CAS  Google Scholar 

  23. Das J, Kardar M, Chakraborty AK (2009) Positive feedback regulation results in spatial clustering and fast spreading of active signaling molecules on a cell membrane. J Chem Phys 130(24):245102

    Article  PubMed  Google Scholar 

  24. Murray JD (1989) Mathematical biology. Springer, Berlin

    Google Scholar 

  25. Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering. Perseus Books, Reading, Mass

    Google Scholar 

  26. Ermentrout B (2002). Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM, Philadelphia

    Book  Google Scholar 

  27. http://oscill8.sourceforge.net/ Last Accessed April 3 2012

  28. Zhu M, Janssen E, Zhang W (2003) Minimal requirement of tyrosine residues of linker for activation of t cells in tcr signaling and thymocyte development. J Immunol 170(1):325–333

    PubMed  CAS  Google Scholar 

  29. Thomson M, Gunawardena J (2009) Unlimited multistability in multisite phosphorylation systems. Nature 460(7252):274–277

    Article  PubMed  CAS  Google Scholar 

  30. Hlavacek WS, Faeder JR, Blinov ML, Posner RG, Hucka M, Fontana W (2006) Rules for modeling signal-transduction systems. Sci STKE 2006(344):re6

    Google Scholar 

  31. Lis M, Artyomov MN, Devadas S, Chakraborty AK (2009) Efficient stochastic simulation of reaction-diffusion processes via direct compilation. Bioinformatics 25(17):2289–2291

    Article  PubMed  CAS  Google Scholar 

  32. http://www.nrcam.uchc.edu/index.html Last Accessed April 3 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Prasad, A. (2012). Computational Modeling of Signal Transduction Networks: A Pedagogical Exposition. In: Liu, X., Betterton, M. (eds) Computational Modeling of Signaling Networks. Methods in Molecular Biology, vol 880. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-833-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-833-7_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-832-0

  • Online ISBN: 978-1-61779-833-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics