Skip to main content

Simulating Microbial Systems: Addressing Model Uncertainty/Incompleteness via Multiscale and Entropy Methods

  • Protocol
  • First Online:
Microbial Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 881))

  • 3753 Accesses

Abstract

Most systems of interest in the natural and engineering sciences are multiscale in character. Typically available models are incomplete or uncertain. Thus, a probabilistic approach is required. We present a deductive multiscale approach to address such problems, focusing on virus and cell systems to demonstrate the ideas.

There is usually an underlying physical model, all factors in which (e.g., particle masses, charges, and force constants) are known. For example, the underlying model can be cast in terms of a collection of N-atoms evolving via Newton’s equations. When the number of atoms is 106 or more, these physical models cannot be simulated directly. However, one may only be interested in a coarse-grained description, e.g., in terms of molecular populations or overall system size, shape, position, and orientation. The premise of this chapter is that the coarse-grained equations should be derived from the underlying model so that a deductive calibration-free methodology is achieved. We consider a reduction in resolution from a description for the state of N-atoms to one in terms of coarse-grained variables. This implies a degree of uncertainty in the underlying microstates. We present a methodology for modeling microbial systems that integrates equations for coarse-grained variables with a probabilistic description of the underlying fine-scale ones. The implementation of our strategy as a general computational platform (SimEntropics TM) for microbial modeling and prospects for developments and applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amadei A, Linssen ABM, Berendsen HJC (1993) Essential dynamics of proteins. Proteins Struct Funct Bioinf 17:412–425

    Article  CAS  Google Scholar 

  2. Gohlke H, Thorpe MF (2006) A natural coarse graining for simulating large biomolecular motion. Biophys J 91:2115–2120

    Article  PubMed  CAS  Google Scholar 

  3. Arkhipov A, Freddolino PL, Schulten K (2006) Stability and dynamics of virus capsids described by coarse-grained modeling. Structure 14:1767–1777

    Article  PubMed  CAS  Google Scholar 

  4. Cheluvaraja S, Ortoleva P (2010) Thermal nanostructure: an order parameter/multiscale ensemble approach. J Chem Phys 132:075102–075109

    Article  PubMed  CAS  Google Scholar 

  5. Jaqaman K, Ortoleva PJ (2002) New space warping method for the simulation of large-scale macromolecular conformational changes. J Comput Chem 23:484–491

    Article  PubMed  CAS  Google Scholar 

  6. Miao Y, Ortoleva PJ (2006) All-atom multiscaling and new ensembles for dynamical nanoparticles. J Chem Phys 125:44901–44908

    Article  PubMed  Google Scholar 

  7. Miao Y, Ortoleva PJ (2009) Molecular dynamics/order parameter eXtrapolation (MD/OPX) for bionanosystem simulations. J Comput Chem 30:423–437

    Article  PubMed  CAS  Google Scholar 

  8. Miao Y, Ortoleva PJ (2010) Viral structural transition mechanisms revealed by multiscale molecular dynamics/order parameter eXtrapolation simulation. Biopolymers 93:61–73

    Article  PubMed  CAS  Google Scholar 

  9. Miao Y, Ortoleva PJ (2006) Viral structural transitions: an all-atom multiscale theory. J Chem Phys 125:214901–214911

    Article  PubMed  Google Scholar 

  10. Ortoleva PJ (2005) Nanoparticle dynamics: a multiscale analysis of the Liouville equation. J Phys Chem B 109:21258–21266

    Article  PubMed  CAS  Google Scholar 

  11. Pankavich S, Miao Y, Ortoleva J, Shreif Z, Ortoleva PJ (2008) Stochastic dynamics of bionanosystems: multiscale analysis and specialized ensembles. J Chem Phys 128:234908–234920

    Article  PubMed  CAS  Google Scholar 

  12. Pankavich S, Ortoleva P (2010) Mutiscaling for systems with a broad continuum of characteristic lengths and times: Structural transitions in nanocomposites. J Math Phys. 51, 063303

    Google Scholar 

  13. Pankavich S, Shreif Z, Ortoleva PJ (2008) Multiscaling for classical nanosystems: derivation of Smoluchowski and Fokker-Planck equations. Physica A 387:4053–4069

    Article  Google Scholar 

  14. Shreif Z, Pankavich S, Ortoleva PJ (2009) Liquid-crystal transitions: a first-principles multiscale approach. Phys Rev E 80:031703–031708

    Article  CAS  Google Scholar 

  15. Sato K, Obinata K, Sugawara T, Urabe I, Yomo T (2006) Quantification of structural properties of cell-sized individual liposomes by flow cytometry. J Biosci Bioeng 102:171–178

    Article  PubMed  CAS  Google Scholar 

  16. Miao Y, Johnson JE, Ortoleva PJ (2010) All-atom multiscale simulation of cowpea chlorotic mottle virus capsid swelling. J Phys Chem B 114:11181–11195

    Article  PubMed  CAS  Google Scholar 

  17. McPherson A (2005) Micelle formation and crystallization as paradigms for virus assembly. Bioessays 27:447–458

    Article  PubMed  CAS  Google Scholar 

  18. Misteli T, Caceres JF, Spector DL (1997) The dynamics of a pre-mRNA splicing factor in living cells. Nature 387:523–527

    Article  PubMed  CAS  Google Scholar 

  19. Johnson JE, Speir JA (1997) Quasi-equivalent viruses: a paradigm for protein assemblies. J Mol Biol 269:665–675

    Article  PubMed  CAS  Google Scholar 

  20. Johnson JM, Tang JH, Nyame Y, Willits D, Young MJ, Zlotnick A (2005) Regulating self-assembly of spherical oligomers. Nano Lett 5:765–770

    Article  PubMed  CAS  Google Scholar 

  21. Weitzke EL, Ortoleva PJ (2003) Simulating cellular dynamics through a coupled transcription, translation, metabolic model. Comput Biol Chem 27:469–481

    Article  PubMed  CAS  Google Scholar 

  22. Navid A, Ortoleva PJ (2004) Simulated complex dynamics of glycolysis in the protozoan parasite Trypanosoma brucei. J Theor Biol 228:449–458

    Article  PubMed  CAS  Google Scholar 

  23. Sayyed-Ahmad A, Tuncay K, Ortoleva PJ (2003) Toward automated cell model development through information theory. J Phys Chem A 107:10554–10565

    Article  CAS  Google Scholar 

  24. Sayyed-Ahmad A, Tuncay K, Ortoleva PJ (2007) Transcriptional regulatory network refinement and quantification through kinetic modeling, gene expression microarray data and information theory. BMC Bioinformatics 8:20–37

    Article  PubMed  Google Scholar 

  25. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  26. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  PubMed  CAS  Google Scholar 

  27. Singharoy A, Yesnik A, Ortoleva PJ (2010) Multiscale analytic continuation approach to nanosystem simulation: applications to virus electrostatics. J Chem Phys 132:174112–174126

    Article  PubMed  Google Scholar 

  28. Sung W, Kim YW (2005) How nature modulates inherent fluctuations for biological self-organization—the case of membrane fusion. J Biol Phys 31:639–644

    Article  CAS  Google Scholar 

  29. Rohs R, Bloch I, Sklenar H, Shakked Z (2005) Molecular flexibility in ab initio drug docking to DNA: binding-site and binding-mode transitions in all-atom Monte Carlo simulations. Nucleic Acids Res 33:7048–7057

    Article  PubMed  CAS  Google Scholar 

  30. Nowak MA (1996) Immune responses against multiple epitopes: a theory for immunodominance and antigenic variation. Sem Virol 7:83–92

    Article  Google Scholar 

  31. Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469–2473

    Article  PubMed  CAS  Google Scholar 

  32. Izvekov S, Voth GA (2005) Multiscale coarse graining of liquid-state systems. J Chem Phys 123:134105–134117

    Article  PubMed  Google Scholar 

  33. Speir JA, Munshi S, Wang GJ, Baker TS, Johnson JE (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryoelectron microscopy. Structure 3:63–78

    Article  PubMed  CAS  Google Scholar 

  34. Singharoy A, Cheluvaraja S, Ortoleva P (2011) Order parameters for macromolecules: application to multiscale simulations. J Chem Phys 134:104106–104122

    Article  Google Scholar 

  35. Freddolino PL, Arkhipov AS, Larson SB, McPherson A, Schulten K (2006) Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14:437–449

    Article  PubMed  CAS  Google Scholar 

  36. Pankavich S, Shreif Z, Miao Y, Ortoleva PJ (2009) Self-assembly of nanocomponents into composite structures: derivation and simulation of Langevin equations. J Chem Phys 130:194115–194124

    Article  PubMed  CAS  Google Scholar 

  37. Bishop B, Dasgupta J, Klein M, Garcea RL, Christensen ND, Zhao R (2007) Crystal structures of four types of human papillomavirus L1 capsid proteins. J Biol Chem 282:31803–31811

    Article  PubMed  CAS  Google Scholar 

  38. Bishop B, Dasgupta J, Chen X (2007) Structure-based engineering of papillomavirus major capsid L1: controlling particle assembly. Virol J 4:3–7

    Article  PubMed  Google Scholar 

  39. Fan J, Tuncay K, Ortoleva PJ (2007) Chromosome segregation in E. coli division: a free energy-driven string mode. Comput Biol Chem 31:257–264

    Article  PubMed  CAS  Google Scholar 

  40. Larter R, Ortoleva P (1982) A study of instability to electrical symmetry-breaking in unicellular systems. J Theor Biol 96:175–200

    Article  CAS  Google Scholar 

  41. Larter R, Ortoleva P (1981) A theoretical basis for self-electrophoresis. J Theor Biol 88:599–630

    Article  PubMed  CAS  Google Scholar 

  42. Qu K, Ortoleva PJ (2008) Understanding stem cell differentiation through self-organization theory. J Theor Biol 250:606–620

    Article  PubMed  CAS  Google Scholar 

  43. Ortoleva P, Ross J (1973) A theory of asymmetric cell division (differentiation). Dev Biol 34:concl19–23

    Google Scholar 

  44. Ortoleva P, Ross J (1973) A chemical instability mechanism for asymmetric cell differentiation. Biophys Chem 1:87–96

    Article  PubMed  CAS  Google Scholar 

  45. Shreif Z, Joshi H, Ortoleva P (2012) Liposomes and enveloped viruses understood the multiscale way. In preparation

    Google Scholar 

  46. Shreif Z, Adhangale P, Cheluvaraja S, Perera R, Kuhn RJ, Ortoleva PJ (2008) Enveloped viruses understood via multiscale simulation: computer-aided vaccine design. Sci Model Simul 15:363–380

    Article  CAS  Google Scholar 

  47. Shreif Z, Ortoleva PJ (2012) All-atom/continuum multiscale theory: application to nanocapsule therapeutic delivery. SIAM Multiscale Model. Simul. (Submitted)

    Google Scholar 

  48. LaBrosse MR, Johnson JK, van Duin ACT (2010) Development of a transferable reactive force field for cobalt. J Phys Chem A 114:5855–5861

    Article  PubMed  CAS  Google Scholar 

  49. Iannuzzi M, Laio A, Parrinello M (2003) Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics. Phys Rev Lett 90:238302–238304

    Article  PubMed  Google Scholar 

  50. Ortoleva PJ (1981) Developmental bioelectricity. In: Illinger KH (ed) Biological effects of nonionizing radiation. American Chemical Society, Washington, DC, pp 163–212

    Chapter  Google Scholar 

  51. Sun J, Tuncay K, Haidar AA, Ensman L, Stanley F, Trelinski M, Ortoleva P (2007) Transcriptional regulatory network discovery via multiple method integration: application to E. coli K12. Algorithms Mol Biol 2:2–14

    Article  PubMed  Google Scholar 

  52. Sayyed-Ahmad A, Tuncay K, Ortoleva PJ (2004) Efficient solution technique for solving the Poisson-Boltzmann equation. J Comput Chem 25:1068–1074

    Article  PubMed  CAS  Google Scholar 

  53. Qu K, Abi Haidar A, Fan J, Ensman L, Tuncay K, Jolly M, Ortoleva PJ (2007) Cancer onset and progression: a genome-wide, nonlinear dynamical systems perspective on onconetworks. J Theor Biol 246:234–244

    Article  PubMed  CAS  Google Scholar 

  54. Tuncay K, Ensman L, Sun AA, Haidar J, Stanley F, Trelinski M, Ortoleva PJ (2006) Transcriptional regulatory networks via gene ontology and expression data. Silico Biol 7:003

    Google Scholar 

  55. Qu K, Yesnik AM, Ortoleva PJ (2010) Alternative splicing regulatory network reconstruction from exon array data. J Theor Biol 263:471–480

    Article  PubMed  CAS  Google Scholar 

  56. Turing AM (1950) Computing machinery and intelligence. Mind 49:433–460

    Article  Google Scholar 

  57. Nicolis I, Prigogine GN (1977) Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

This project was supported in part by the National Science Foundation (Collaborative Research in Chemistry program), National Institutes of Health (NIBIB), Department Of Energy (office of basic science), and Indiana University College of arts and sciences through the Center for Cell and Virus theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ortoleva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Singharoy, A., Joshi, H., Cheluvaraja, S., Miao, Y., Brown, D., Ortoleva, P. (2012). Simulating Microbial Systems: Addressing Model Uncertainty/Incompleteness via Multiscale and Entropy Methods. In: Navid, A. (eds) Microbial Systems Biology. Methods in Molecular Biology, vol 881. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-827-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-827-6_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-826-9

  • Online ISBN: 978-1-61779-827-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics