Skip to main content

Electrophysiological-Metabolic Modeling of Microbes: Applications in Fuel Cells and Environment Analysis

  • Protocol
  • First Online:
Microbial Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 881))

  • 3748 Accesses

Abstract

A formalism for simulating coupled metabolic and electrophysiological processes is presented. The resulting chemical kinetic and electrophysiological equations are solved numerically to create a cell simulator. Metabolic features of this simulator were adapted from Karyote, a multi-compartment biochemical cell modeling simulator. We present the mathematical formalism and its computational implementation as an integrated electrophysiological-metabolic model. Applications to Geobacter sulfurreducens in the environment and in a fuel cell are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakker BM, Michels PA, Opperdoes FR, Westerhoff HV (1997) Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J Biol Chem 272:3207–3215

    Article  PubMed  CAS  Google Scholar 

  2. Cortassa S, Aon MA (1994) Metabolic control analysis of glycolysis and branching to ethanol production in chemostat cultures of Saccharomyces cerevisiae under carbon, nitrogen, or phosphate limitations. Enzyme Microb Technol 16:761–770

    Article  CAS  Google Scholar 

  3. Galazzo JL, Bailey JE (1990) Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme Microb Technol 12:162–173

    Article  CAS  Google Scholar 

  4. Garfinkel D, Frenkel RA, Garfinkel L (1968) Simulation of the detailed regulation of glycolysis in a heart supernatant preparation. Comput Biomed Res 2:68–91

    Article  PubMed  CAS  Google Scholar 

  5. Baier G, Muller M, Orsnes H (2002) Excitable spatio-temporal chaos in a model of glycolysis. J Phys Chem 106:3275–3282

    Article  CAS  Google Scholar 

  6. Bakker BM, Mensonides FI, Teusink B, van Hoek P, Michels PA, Westerhoff HV (2000) Compartmentation protects trypanosomes from the dangerous design of glycolysis. Proc Natl Acad Sci U S A 97:2087–2092

    Article  PubMed  CAS  Google Scholar 

  7. Eisenthal R, Cornish-Bowden A (1998) Prospects for antiparasitic drugs: the case of Trypanosoma brucei, the causative agent of African sleeping sickness. J Biol Chem 273:5500–5505

    Article  PubMed  CAS  Google Scholar 

  8. Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–5329

    Article  PubMed  CAS  Google Scholar 

  9. Zamamiri AM, Birol G, Hjortsø MA (2001) Multiple stable states and hysterisis in continuous, oscillating cultures of budding yeast. Biotechnol Bioeng 73:305–312

    Article  Google Scholar 

  10. Navid A, Ortoleva PJ (2004) Simulated complex dynamics of glycolysis in the protozoan parasite Trypanosoma brucei. J Theor Biol 228:449–458

    Article  PubMed  CAS  Google Scholar 

  11. Weitzke EL, Ortoleva PJ (2003) Simulating cellular dynamics through a coupled transcription, translation, metabolic model. Comput Biol Chem 27:469–481

    Article  PubMed  CAS  Google Scholar 

  12. Jaffe LF (1979) Control of development by ionic currents. Soc Gen Physiol Ser 33:199–231

    PubMed  CAS  Google Scholar 

  13. Ortoleva P (1981) Developmental bioelectricity. In: Illinger KH (ed) Biological effects of nonionizing radiation. American Chemical Society, Washington, DC, pp 163–212

    Chapter  Google Scholar 

  14. Adebodun F, Post JFM (1993) 19F NMR studies of changes in membrane potential and intracellular volume during dexamethasone-induced apoptosis in human leukemic cell lines. J Cell Physiol 154:199–206

    Article  PubMed  CAS  Google Scholar 

  15. London RE, Gabel SA (1989) Determination of membrane potential and cell volume by 19F NMR using trifluoroacetate and trifluoroacetamide probes. Biochemistry 28:2378–2382

    Article  PubMed  CAS  Google Scholar 

  16. Miller PGG (1984) Alternate pathways in protozoan energy metabolism. Parasitology 82:23–25

    Google Scholar 

  17. Courtemanche M, Ramirez RJ, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol 275:H301–H321

    PubMed  CAS  Google Scholar 

  18. Virgilio L, Bookchin RM (1986) Volume, pH, and ion-content regulation in human red cells: analysis of transient behavior with an integrated model. J Membr Biol 92:57–74

    Article  Google Scholar 

  19. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  20. Bashford CL, Pasternak CA (1985) Plasma membrane potential of neutrophils generated by the Na+-pump. Biochim Biophys Acta 817:174–180

    Article  PubMed  CAS  Google Scholar 

  21. Olschewski A, Hong Z, Nelson DP, Weir EK (2002) Graded response of K+ current, membrane potential, and [Ca2+]i to hypoxia in pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 283:L1143–L1150

    PubMed  CAS  Google Scholar 

  22. Leppanen L, Stys PK (1997) Ion transport and membrane potential in CNS myelinated axons II. Effects of metabolic inhibition. J Neurophysiol 78:2095–2107

    PubMed  CAS  Google Scholar 

  23. Yasui K, Liu W, Opthof T, Kada K, Lee JK, Kamiya K, Kodama I (2001) I(f) current and spontaneous activity in mouse embryonic ventricular myocytes. Circ Res 88:536–542

    Article  PubMed  CAS  Google Scholar 

  24. Terasawa K, Nakajima T, Iida H, Iwasawa K, Oonuma H, Jo T, Morita T, Nakamura F, Fujimori Y, Toyo-oka T, Nagai R (2002) Nonselective cation currents regulate membrane potential of rabbit coronary arterial cell: modulation by lysophosphatidylcholine. Circulation 106:3111–3119

    Article  PubMed  Google Scholar 

  25. Oghalai JS, Zhao HB, Kutz JW, Brownell WE (2000) Voltage- and tension-dependent lipid mobility in the outer hair cell plasma membrane. Science 287:658–661

    Article  PubMed  CAS  Google Scholar 

  26. Poberaj I, Rupnik M, Kreft M, Sikdar SK, Zorec R (2002) Modeling excess retrieval in rat melanotroph membrane capacitance records. Biophys J 82:226–232

    Article  PubMed  CAS  Google Scholar 

  27. Inoue I, Tsutsui I, Abbott NJ, Brown ER (2002) Ionic currents in isolated and in situ squid Schwann cells. J Physiol 541:769–778

    Article  PubMed  CAS  Google Scholar 

  28. Saimi Y, Martinac B, Delcour AH, Minorsky PV, Gustin MC, Culbertson MR, Adler J, Kung C (1992) Patch clamp studies of microbial ion channels. Methods Enzymol 207:681–691

    Article  PubMed  CAS  Google Scholar 

  29. Nolan PD, Vooerheis HP (2000) Factors that determine the plasma-membrane potential in bloodstream forms of Trypanosoma brucei. Eur J Biochem 267:4615–4623

    Article  PubMed  CAS  Google Scholar 

  30. Damper PD, Epstein W (1981) Role of the membrane potential in bacterial resistance to aminoglycoside antibiotics. Antimicrob Agents Chemother 20:803–808

    Article  PubMed  CAS  Google Scholar 

  31. Bernstein J (1902) Untersuchungen Zur Thermodynamik der Bioelectrichen Strome. Pfluegers Arch 92:521–562

    Article  CAS  Google Scholar 

  32. Berstein J (1912) Elektrobiologie. F. Vieweg, Braunschweig

    Google Scholar 

  33. Goldman DE (1943) Potential, impedance, and rectification in membranes. J Gen Physiol 27:37–60

    Article  PubMed  CAS  Google Scholar 

  34. Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    PubMed  CAS  Google Scholar 

  35. Fontus, MWA (2007) Simulating the electrometabolome. Ph.D Thesis, Indiana University, Bloomington. 141 p.

    Google Scholar 

  36. Brown PN, Byrne GD, Hindmarsh AC (1989) VODE: a variable coefficient ODE solver. SIAM J Sci Stat Comput 10:1038–1051

    Article  Google Scholar 

  37. Byrne GD, Hindmarsh AC (1975) A polyalgorithm for the numerical solution of ordinary differential equations. ACM Trans Math Softw 1:71–96

    Article  Google Scholar 

  38. Byrne GD, Hindmarsh AC (1976) EPISODEB: an experimental package for the integration of systems of ordinary differential equations with banded Jacobians. LLNL Report UCID/30132

    Google Scholar 

  39. Hindmarsh AC (1983) ODEPACK, a systematized collection of ODE solvers in Scientific Computing. In: R.S. Stepleman et al. (eds.) (vol. 1 of IMACS Transactions on Scientific Computation): North-Holland, Amsterdam, pp. 55–64.

    Google Scholar 

  40. Hindmarsh AC, Byrne GD (1977) EPISODE: an effective package for the integration of systems of ordinary differential equations. LLNL Report UCID/30112 1

    Google Scholar 

  41. Jackson KR, Sacks-Davis R (1980) An alternative implementation of variable step-size multistep formulas for stiff ODEs. ACM Trans Math Softw 6:295–318

    Article  Google Scholar 

  42. Picioreanu C, van Loosdrecht MC, Katuri KP, Scott K, Head IM (2008) Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion. Water Sci Technol 57:965–971

    Article  PubMed  CAS  Google Scholar 

  43. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  PubMed  CAS  Google Scholar 

  44. Cord-Ruwisch R, Lovley DR, Schink B (1998) Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol 64:2232

    PubMed  CAS  Google Scholar 

  45. Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345

    Article  PubMed  CAS  Google Scholar 

  46. Renard F, Gratier JP, Ortoleva P, Brosse E, Bazin B (1998) Self organization during reactive fluid flow in a porous medium. Geophys Res Lett 25:385–388

    Article  Google Scholar 

  47. Bond RD, Lovley DR (2000) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  Google Scholar 

  48. Doodoroff M, Stanier RY (1959) Role of poly-beta-hydroxybutyric acid in aerobic gram-negative bacteria. Nature 183:1440–1442

    Article  Google Scholar 

  49. Forsyth WG, Hayward AC, Roberts JB (1958) Occurrence of poly-beta-hydroxybutyric acid in aerobic gram-negative bacteria. Nature 182:800–801

    Article  PubMed  CAS  Google Scholar 

  50. Lemoigne M (1927) Etudes sur l’autolyse microbienne. Origine de l’acide-oxybutyrique form’e par autolyse. Ann Inst Pasteur 41:148–165

    Google Scholar 

  51. Lemoigne M, Girard H (1943) Reserves lipidiques beta-hydroxybutyriques chez Azobacter chroococcum. C R Acad Sci Paris 217:557–558

    CAS  Google Scholar 

  52. Morris MB, Roberts JB (1959) A group of pseudomonads able to synthesize poly-beta-hydroxybutyric acid. Nature 183:1538–1539

    Article  PubMed  CAS  Google Scholar 

  53. Stanier RY (1961) Photosynthetic mechanism in bacteria and plants: development of a unitary concept. Bacteriol Rev 25:1–17

    PubMed  CAS  Google Scholar 

  54. Tavano CL, Donahue TJ (2006) Development of the bacterial photosynthetic apparatus. Curr Opin Microbiol 9:625–631

    Article  PubMed  CAS  Google Scholar 

  55. Freguia S, Rabaey K, Yuan Z, Keller J (2007) Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. Environ Sci Technol 41:2915–2921

    Article  PubMed  CAS  Google Scholar 

  56. Sayyed-Ahmad A, Tuncay K, Ortoleva PJ (2003) Toward automated cell model development through information theory. J Phys Chem A 107:10554–10565

    Article  CAS  Google Scholar 

  57. Sayyed-Ahmad A, Tuncay K, Ortoleva PJ (2007) Transcriptional regulatory network refinement and quantification through kinetic modeling, gene expression microarray data and information theory. BMC Bioinformatics 8:20

    Article  PubMed  Google Scholar 

  58. Larter R, Ortoleva P (1981) A theoretical basis for self-electrophoresis. J Theor Biol 88:599–630

    Article  PubMed  CAS  Google Scholar 

  59. Larter R, Ortoleva P (1982) A study of instability to electrical symmetry-breaking in unicellular systems. J Theor Biol 96:175–200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the Undergraduate Medical Academy at Prairie View A&M University, and the Indiana University College of Arts and Sciences through the Center for Cell and Virus Theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ortoleva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fontus, M., Ortoleva, P. (2012). Electrophysiological-Metabolic Modeling of Microbes: Applications in Fuel Cells and Environment Analysis. In: Navid, A. (eds) Microbial Systems Biology. Methods in Molecular Biology, vol 881. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-827-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-827-6_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-826-9

  • Online ISBN: 978-1-61779-827-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics