Skip to main content

Biolog Phenotype Microarrays

  • Protocol
  • First Online:
Microbial Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 881))

Abstract

Phenotype microarrays nicely complement traditional genomic, transcriptomic, and proteomic analysis by offering opportunities for researchers to ground microbial systems analysis and modeling in a broad yet quantitative assessment of the organism’s physiological response to different metabolites and environments. Biolog phenotype assays achieve this by coupling tetrazolium dyes with minimally defined nutrients to measure the impact of hundreds of carbon, nitrogen, phosphorous, and sulfur sources on redox reactions that result from compound-induced effects on the electron transport chain. Over the years, we have used Biolog’s reproducible and highly sensitive assays to distinguish closely related bacterial isolates, to understand their metabolic differences, and to model their metabolic behavior using flux balance analysis. This chapter describes Biolog phenotype microarray system components, reagents, and methods, particularly as they apply to bacterial identification, characterization, and metabolic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bochner BR, Savageau MA (1977) Generalized indicator plate for genetic, metabolic, and taxonomic studies with microorganisms. Appl Environ Microbiol 33:434–444

    PubMed  CAS  Google Scholar 

  2. Bochner BR (1989) Sleuthing out bacterial identities. Nature 339:157–158

    Article  PubMed  CAS  Google Scholar 

  3. Rodriguez GG, Phipps D, Ishiguro K, Ridgway HF (1992) Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl Environ Microbiol 58:1801–1808

    PubMed  CAS  Google Scholar 

  4. Lederberg J (1948) Detection of fermentative variants with tetrazolium. J Bacteriol 56:695

    CAS  Google Scholar 

  5. Kushnarev VM (1966) [Formation of insoluble products in cells of gram-negative bacteria and their isolation]. Dokl Akad Nauk SSSR 171:207–208

    PubMed  CAS  Google Scholar 

  6. Leene W, van Iterson W (1965) Tetranitro—blue tetrazolium reduction in Bacillus subtilis. J Cell Biol 27:237–241

    Article  PubMed  CAS  Google Scholar 

  7. Vanderwinkel E, Murray RG (1962) [Bacterial intracytoplasmic organelles and the site of oxidation-reduction activity]. J Ultrastruct Res 7:185–199

    Article  PubMed  CAS  Google Scholar 

  8. Jambor B (1954) Reduction of tetrazolium salt. Nature (London) 173:774–775

    Article  CAS  Google Scholar 

  9. Smith FE (1951) Tetrazolium salt. Science 113:751–754

    Article  PubMed  CAS  Google Scholar 

  10. Mukherjee A, Jackson SA, Leclerc JE, Cebula TA (2006) Exploring genotypic and phenotypic diversity of microbes using microarray approaches. Toxicol Mech Methods 16:121–128

    Article  PubMed  CAS  Google Scholar 

  11. Aldenderfer MS, Blashfield RK (eds) (1984) Cluster analysis: quantitative applications in the social sciences. Sage University Press, Newbury Park

    Google Scholar 

  12. Everitt BS, Landau S, Leese M, Stahl D (2011) Cluster analysis, 5th edn. Wiley Press, West Sussex

    Book  Google Scholar 

  13. Kaufman L, Rousseeuw PJ (2005) Finding groups in data: an introduction to cluster analysis. Wiley Press, West Sussex

    Google Scholar 

  14. Romesburg C (2007) Cluster analysis for researchers. Lulu Press, Morrisville

    Google Scholar 

  15. Jones J, Studholme DJ, Knight CG, Preston GM (2007) Integrated bioinformatic and phenotypic analysis of RpoN-dependent traits in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. Environ Microbiol 9:3046–3064

    Article  PubMed  CAS  Google Scholar 

  16. Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R (2007) Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem 282:28791–28799

    Article  PubMed  CAS  Google Scholar 

  17. Iversen C, Mullane N, Fanning S, McCardell B, Tall BD, Kothary MH, Carter L, Lehner A, Stephan R, Joosten H (2008) Differentiation of novel species using the phenotype microarray. In: Florence conference on phenotype microarray analysis of microorganisms: the environment, agriculture, and human health, Firenze, Italy

    Google Scholar 

  18. Iversen C, Tall BD, Fanning S (2008) Analysis of Enterobacter sakazakii (Cronobacter spp.). In: Florence conference on phenotype microarray analysis of microorganisms: the environment, agriculture, and human health, Firenze, Italy

    Google Scholar 

  19. Tall BD, Fanning S, Iversen C, Mullane N, Kothary MH, Datta A, Carter L, Curtis SK, McCardell BA (2008) Phenotypic microarray analysis of Cronobacter Spp. (formerly Enterobacter sakazakii). In: Conference on phenotype microarray analysis of microorganisms: the environment, agriculture, and human health, Firenze, Italy

    Google Scholar 

  20. Biondi EG, Tatti E, Comparini D, Giuntini E, Mocali S, Giovannetti L, Bazzicalupo M, Mengoni A, Viti C (2009) Metabolic capacity of Sinorhizobium (Ensifer) meliloti strains as determined by phenotype MicroArray analysis. Appl Environ Microbiol 75:5396–5404

    Article  PubMed  CAS  Google Scholar 

  21. Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, Wood TK (2010) Cryptic prophages help bacteria cope with adverse environments. Nat Commun 1:147

    Article  PubMed  Google Scholar 

  22. Datta AA, Carter L, Burall L (2008) Comparative phenotypic microarray analysis of Listeria monocytogenes strains Involved In invasive and gastroenteritis listeriosis outbreaks. In: Florence conference on phenotype microarray analysis of microorganisms: the environment, agriculture, and human health, Firenze, Italy

    Google Scholar 

  23. Homann OR, Cai H, Becker JM, Lindquist SL (2005) Harnessing natural diversity to probe metabolic pathways. PLoS Genet 1:e80

    Article  PubMed  Google Scholar 

  24. Winsor CP (1932) The Gompertz curve as a growth curve. Proc Natl Acad Sci U S A 18:1–8

    Article  PubMed  CAS  Google Scholar 

  25. Sturino J, Zorych I, Mallick B, Pokusaeva K, Chang YY, Carroll RJ, Bliznuyk N (2010) Statistical methods for comparative phenomics using high-throughput phenotype microarrays. Int J Biostat 6(1):29

    Google Scholar 

  26. Raghunathan A, Price ND, Galperin MY, Makarova KS, Purvine S, Picone AF, Cherny T, Xie T, Reilly TJ, Munson R Jr, Tyler RE, Akerley BJ, Smith AL, Palsson BO, Kolker E (2004) In silico metabolic model and protein expression of Haemophilus influenzae strain Rd KW20 in rich medium. OMICS 8:25–41

    Article  PubMed  CAS  Google Scholar 

  27. Trawick JD, Schilling CH (2006) Use of constraint-based modeling for the prediction and validation of antimicrobial targets. Biochem Pharmacol 71:1026–1035

    Article  PubMed  CAS  Google Scholar 

  28. Henry CS, Zinner JF, Cohoon MP, Stevens RL (2009) iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol 10:R69

    Article  PubMed  Google Scholar 

  29. Raghunathan A, Shin S, Daefler S (2010) Systems approach to investigating host-pathogen interactions in infections with the biothreat agent Francisella. Constraints-based model of Francisella tularensis. BMC Syst Biol 4:118

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in part by a grant from the United States Defense Threat Reduction Agency (TMTI0049_09_RD_T) and Joint Program Executive Office-Chemical and Biological Defense, Medical Identification & Treatment Systems, Critical Reagents Program (JPEO-CBD, CBMS, MITS, and CRP). Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Army.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Rozak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shea, A., Wolcott, M., Daefler, S., Rozak, D.A. (2012). Biolog Phenotype Microarrays. In: Navid, A. (eds) Microbial Systems Biology. Methods in Molecular Biology, vol 881. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-827-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-827-6_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-826-9

  • Online ISBN: 978-1-61779-827-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics