Skip to main content

Metabolic Pathway Determination and Flux Analysis in Nonmodel Microorganisms Through 13C-Isotope Labeling

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 881))

Abstract

C-isotope labeling is a commonly used technique for determining and quantifying pathways in microorganisms under various growth conditions. The experimental protocol consists of feeding the cell with a composition-defined substrate and measuring isotopic labeling patterns in the synthesized metabolites (often the amino acids). Not only can the labeling information be cross-referenced with genomic information to identify the novel pathways, but it can also be used to decipher absolute carbon fluxes through the metabolic network of interest. This technique can be widely used for functional characterization of nonmodel microbial species, and thus we provide a 13C-pathway and flux analysis protocol. The five key procedures are: (1) growing cells using labeled substrates, (2) measuring extracellular metabolite and biomass component, (3) analyzing isotopic labeling patterns in amino acids and central metabolites using gas chromatography-mass spectrometry, (4) tracing 13C carbon transitions in metabolites and discovering new pathways, and (5) estimating flux distributions based on isotopomer constraints. This protocol provides complementary information to the recently published protocol for 13C-based metabolic flux analysis of the model species Escherichia coli (Nat Protoc 4:878–892, 2009).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zamboni N, Sauer U (2009) Novel biological insights through metabolomics and 13C-flux analysis. Curr Opin Microbiol 12:553–558

    Article  PubMed  CAS  Google Scholar 

  2. Tang YJ, Martin HG, Myers S, Rodriguez S, Baidoo EK, Keasling JD (2009) Advances in analysis of microbial metabolic fluxes via 13C isotopic labeling. Mass Spectrom Rev 28:362–375

    Article  PubMed  CAS  Google Scholar 

  3. Tang YJ, Pingitore F, Mukhopadhyay A, Phan R, Hazen TC, Keasling JD (2007) Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris Hildenborough using GC-MS and FT-ICR mass spectrometry. J Bacteriol 189:940–949

    Article  PubMed  CAS  Google Scholar 

  4. Feng X, Mouttaki H, Lin L, Huang R, Wu B, Hemme CL, He Z, Zhang B, Hicks LM, Xu J, Zhou J, Tang YJ (2009) Characterization of the central metabolic pathways in Thermoanaerobacter sp. X514 via isotopomer-assisted metabolite analysis. Appl Environ Microbiol 75(15):5001–5008

    Article  PubMed  CAS  Google Scholar 

  5. Zamboni N, Fendt SM, Ruhl M, Sauer U (2009) C-13-based metabolic flux analysis. Nat Protoc 4:878–892

    Article  PubMed  CAS  Google Scholar 

  6. Tang YJ, Meadows AL, Kirby J, Keasling JD (2007) Anaerobic central metabolic pathways in Shewanella oneidensis MR-1 reinterpreted in the light of isotopic metabolite labeling. J Bacteriol 189:894–901

    Article  PubMed  CAS  Google Scholar 

  7. Wahl SA, Dauner M, Wiechert W (2004) New tools for mass isotopomer data evaluation in 13C flux analysis: mass isotope correction, data consistency checking, and precursor relationships. Biotechnol Bioeng 85:259–268

    Article  PubMed  CAS  Google Scholar 

  8. Tang YJ, Martin HG, Deutschbauer A, Feng X, Huang R, Llora X, Arkin A, Keasling JD (2009) Invariability of central metabolic flux distribution in Shewanella oneidensis MR-1 under environmental or genetic perturbations. Biotechnol Prog 25:1254–1259

    Article  PubMed  CAS  Google Scholar 

  9. Tang YJ, Yi S, Zhuang W, Zinder SH, Keasling JD, Alvarez-Cohen L (2009) Investigation of carbon metabolism in “Dehalococcoides ethenogenes” strain 195 via isotopic and transcriptomic analysis. J Bacteriol 191:5224–5231

    Article  PubMed  CAS  Google Scholar 

  10. Pingitore F, Tang YJ, Kruppa GH, Keasling JD (2007) Analysis of amino acid isotopomers using FT-ICR MS. Anal Chem 79:2483–2490

    Article  PubMed  CAS  Google Scholar 

  11. Tang YJ, Hwang JS, Wemmer D, Keasling JD (2007) The Shewanella oneidensis MR-1 fluxome under various oxygen conditions. Appl Environ Microbiol 73:718–729

    Article  PubMed  CAS  Google Scholar 

  12. Tang YJ, Martin HG, Dehal PS, Deutschbauer A, Llora X, Meadows A, Arkin A, Keasling JD (2009) Metabolic flux analysis of Shewanella spp. reveals evolutionary robustness in central carbon metabolism. Biotechnol Bioeng 102:1161–1169

    Article  PubMed  CAS  Google Scholar 

  13. Marshal J (2004) Production of secondary metabolites from acetyl Co-A precursors in bacterial and fungal hosts. PhD thesis, In Chemical engineering. University of California, Berkeley

    Google Scholar 

  14. Garcia DE, Baidoo EE, Benke PI, Pingitore F, Tang YJ, Villa S, Keasling JD (2008) Separation and mass spectrometry in microbial metabolomics. Curr Opin Microbiol 11:233–239

    Article  PubMed  CAS  Google Scholar 

  15. Iwatani S, Van Dien S, Shimbo K, Kubota K, Kageyama N, Iwahata D, Miyano H, Hirayama K, Usuda Y, Shimizu K, Matsui K (2007) Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by LC-MS/MS. J Biotechnol 128:93–111

    Article  PubMed  CAS  Google Scholar 

  16. Tang YJ, Shui WQ, Myers S, Feng X, Bertozzi C, Keasling JD (2009) Isotopomer analysis of both free metabolites and proteinogenic amino acids to investigate aerobic metabolism and hypoxic response of Mycobacterium smegmatis. Biotechnol Lett 31:1233–1240

    Article  PubMed  CAS  Google Scholar 

  17. Dauner M, Sauer U (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Prog 16:642–649

    Article  PubMed  CAS  Google Scholar 

  18. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal Chem 79:7554–7559

    Article  PubMed  CAS  Google Scholar 

  19. Green ML, Karp PD (2005) Genome annotation errors in pathway databases due to semantic ambiguity in partial EC numbers. Nucleic Acids Res 33:4035–4039

    Article  PubMed  CAS  Google Scholar 

  20. Wu B, Zhang B, Feng X, Rubens JR, Huang R, Hicks LM, Pakrasi HB, Tang YJ (2010) An alternate isoleucine biosynthesis pathway involves citramalate synthase in Cyanothece sp. ATCC 51142. Microbiology 156:596–602

    Article  PubMed  CAS  Google Scholar 

  21. Zupte C, Stephanopoulos G (1994) Modeling of isotope distributions and intracellular fluxes in metabolic networks using atom mapping matrices. Biotechnol Prog 10:489–498

    Article  Google Scholar 

  22. Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering principles and methodologies. Academic, San Diego

    Google Scholar 

  23. Schmidt K, Carlsen M, Nielsen J, Villadsen J (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol Bioeng 55:831–840

    Article  PubMed  CAS  Google Scholar 

  24. Varma A, Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. BioTechnology 12:994–998

    Article  CAS  Google Scholar 

  25. Suthers PF, Burgard AP, Dasika MS, Nowroozi F, Van Dien S, Keasling JD, Maranas CD (2007) Metabolic flux elucidation for large-scale models using 13C labeled isotopes. Metab Eng 9:387–405

    Article  PubMed  CAS  Google Scholar 

  26. Zhao J, Shimizu K (2003) Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and powerful flux calculation method. J Biotechnol 101:101–117

    Article  PubMed  CAS  Google Scholar 

  27. Moxley JF, Jewett MC, Antoniewicz MR, Villas-Boas SG, Alper H, Wheeler RT, Tong L, Hinnebusch AG, Ideker T, Nielsen J, Stephanopoulos G (2009) Linking high resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc Natl Acad Sci U S A 106:6477–6482

    Article  PubMed  CAS  Google Scholar 

  28. Tang YJ, Sapra R, Joyner D, Hazen TC, Myers S, Reichmuth D, Blanch H, Keasling JD (2009) Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain. Biotechnol Bioeng 102:1377–1386

    Article  PubMed  CAS  Google Scholar 

  29. Hua Q, Joyce AR, Palsson BO, Fong SS (2007) Metabolic characterization of Escherichia coli adapted to growth on lactate. Appl Environ Microbiol 73:4639–4647

    Article  PubMed  CAS  Google Scholar 

  30. Mahadevan R, Edwards JS, Doyle FJ (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83:1331–1340

    Article  PubMed  CAS  Google Scholar 

  31. Ruhl M, Zamboni N, Sauer U (2009) Dynamic flux responses in riboflavin overproducing Bacillus subtilis to increasing glucose limitation in fed-batch culture. Biotechnol Bioeng 105:795–804

    Google Scholar 

  32. Shastri AA, Morgan JA (2007) A transient isotopic labeling methodology for 13C metabolic flux analysis of photoautotrophic microorganisms. Phytochemistry 68:2302–2312

    Article  PubMed  CAS  Google Scholar 

  33. Nöh K, Grönke K, Luo B, Takors R, Oldiges M, Wiechert W (2007) Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J Biotechnol 129:249–267

    Article  PubMed  Google Scholar 

  34. Bennett BD, Yuan J, Kimball EH, Rabinowitz JD (2008) Absolute quantitation of intracellular metabolite concentrations by an isotope ratiobased approach. Nat Protoc 3:1299–1311

    Article  PubMed  CAS  Google Scholar 

  35. Malaisse WJ, Zhang Y, Jijakli H, Courtois P, Sener A (2004) Enzyme-to-enzyme channelling in the early steps of glycolysis in rat pancreatic islets. Int J Biochem Cell Biol 36:1510–1520

    Article  PubMed  CAS  Google Scholar 

  36. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129

    Article  PubMed  CAS  Google Scholar 

  37. Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA (2007) Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 3:92

    Article  PubMed  Google Scholar 

  38. Madsen EL (2008) Environmental microbiology: from genomes to biogeochemistry. Blackwell, Carlton

    Google Scholar 

  39. Sauer U (2004) High-throughput phenomics: experimental methods for mapping fluxomes. Curr Opin Biotechnol 15:58–63

    Article  PubMed  CAS  Google Scholar 

  40. Wiechert W, Möllney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265–283

    Article  PubMed  CAS  Google Scholar 

  41. Quek LE, Wittmann C, Nielsen LK, Krömer JO (2009) OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Fact 8:25

    Article  PubMed  Google Scholar 

  42. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86

    Article  PubMed  CAS  Google Scholar 

  43. Tang K-H, Feng X, Tang YJ, Blankenship RE (2009) Carbohydrate metabolism and carbon fixation in Roseobacter denitrificans OCh114. PLoS One 4:e7233

    Article  PubMed  Google Scholar 

  44. Tang K-H, Feng X, Zhuang W-Q, Alvarez-Cohen L, Blankenship RE, Tang YJ (2010) Carbon flow of Heliobacterium modesticaldum is more related to firmicutes than to the green sulfur bacteria. J Biol Chem 285:35104–35112

    Article  PubMed  CAS  Google Scholar 

  45. Tang YJ, Chakraborty R, Martin HG, Chu J, Hazen TC, Keasling JD (2007) Flux analysis of central metabolic pathways in Geobacter metallireducens during reduction of soluble Fe(III)-NTA. Appl Environ Microbiol 73:3859–3864

    Article  PubMed  CAS  Google Scholar 

  46. Feng X, Banerjee A, Berla B, Page L, Wu B, Pakrasi HB, Tang YJ (2010) Mixotrophic and photoheterotrophic metabolisms in Cyanothece sp. ATCC 51142 under continuous light. Microbiology 156:2566–2574

    Article  PubMed  CAS  Google Scholar 

  47. Tang KH, Tang YJ, Blankenship RE (2011) Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Frontier in Microbiology 2:165

    Google Scholar 

Download references

Acknowledgments

This study was supported in part by an NSF Career Grant (MCB0954016) and by a DOE bioenergy research grant (DEFG0208ER64694).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinjie J. Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Feng, X., Zhuang, WQ., Colletti, P., Tang, Y.J. (2012). Metabolic Pathway Determination and Flux Analysis in Nonmodel Microorganisms Through 13C-Isotope Labeling. In: Navid, A. (eds) Microbial Systems Biology. Methods in Molecular Biology, vol 881. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-827-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-827-6_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-826-9

  • Online ISBN: 978-1-61779-827-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics