Skip to main content

Large-Scale Protein Phosphorylation Analysis by Mass Spectrometry-Based Phosphoproteomics

  • Protocol
  • First Online:
Protein Kinase Technologies

Part of the book series: Neuromethods ((NM,volume 68))

Abstract

Protein phosphorylation is one of the key mechanisms controlling cellular signaling networks. Due to the low abundance of phosphorylated proteins and weaker ionization efficiency of phosphopeptides during mass spectrometric analyses, it is highly required to remove abundant non-phosphopeptides from complex mixtures, such as cell lysates, allowing successful detection of low abundant phosphopeptides. We recently developed an aliphatic hydroxy acid-modified metal oxide chromatography (HAMMOC) to efficiently and selectively enrich phosphopeptides prior to mass spectrometry (MS) analysis. Here we describe a detailed workflow of HAMMOC for enriching phosphopeptides from small amounts, e.g., 100 μg, of tryptic digests of whole cell lysate. We also discuss the importance of confidently assigning phosphorylation site(s) from an identified phosphopeptide after MS analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter T (2000) Signaling–2000 and beyond. Cell 100:113–127

    Article  PubMed  CAS  Google Scholar 

  2. Mann M, Ong S-E, Grønborg M et al (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20:261–268

    Article  PubMed  CAS  Google Scholar 

  3. Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  PubMed  CAS  Google Scholar 

  4. Kersey P, Bower L, Morris L et al (2005) Integr8 and Genome Reviews: integrated views of complete genomes and proteomes. Nucleic Acids Res 33:D297–D302

    Article  PubMed  CAS  Google Scholar 

  5. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365

    Article  PubMed  CAS  Google Scholar 

  6. Ashman K, Villar EL (2009) Phosphoproteomics and cancer research. Clin Transl Oncol 11:356–362

    Article  PubMed  CAS  Google Scholar 

  7. Dass C (2009) Recent developments in mass spectrometry analysis of phosphoproteomes. Curr Proteomics 6:32–42

    Article  CAS  Google Scholar 

  8. Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49:199–221

    Article  PubMed  CAS  Google Scholar 

  9. Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics 9:1451–1468

    Article  PubMed  CAS  Google Scholar 

  10. Mayya V, Han DK (2009) Phosphoproteomics by mass spectrometry: insights, implications, applications and limitations. Expert Rev Proteomics 6:605–618

    Article  PubMed  CAS  Google Scholar 

  11. Lemeer S, Heck AJ (2009) The phosphoproteomics data explosion. Curr Opin Chem Biol 13:414–420

    Article  PubMed  CAS  Google Scholar 

  12. Matsuoka S, Ballif BA, Smogorzewska A et al (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166

    Article  PubMed  CAS  Google Scholar 

  13. Smolka MB, Albuquerque CP, Chen SH et al (2007) Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc Natl Acad Sci USA 104:10364–10369

    Article  PubMed  CAS  Google Scholar 

  14. Stokes MP, Rush J, Macneill J et al (2007) Profiling of UV-induced ATM/ATR signaling pathways. Proc Natl Acad Sci USA 104:19855–19860

    Article  PubMed  CAS  Google Scholar 

  15. Andersen JN, Sathyanarayanan S, Di Bacco A et al (2010) Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors. Sci Transl Med 2:43ra55

    Article  PubMed  Google Scholar 

  16. Moritz A, Li Y, Guo A et al (2010) Akt-RSK-S6 kinase signaling networks activated by oncogenic receptor tyrosine kinases. Sci Signal 3:ra64

    Article  PubMed  Google Scholar 

  17. Rix U, Hantschel O, Durnberger G et al (2007) Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 110:4055–4063

    Article  PubMed  CAS  Google Scholar 

  18. Oppermann FS, Gnad F, Olsen JV et al (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8:1751–1764

    Article  PubMed  CAS  Google Scholar 

  19. Ikeguchi Y, Nakamura H (1997) Determination of organic phosphates by column-switching high performance anion-exchange chromatography using on-line preconcentration on titania. Anal Sci 13:479–483

    Article  CAS  Google Scholar 

  20. Pinkse MW, Uitto PM, Hilhorst MJ et al (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935–3943

    Article  PubMed  CAS  Google Scholar 

  21. Sano A, Nakamura H (2004) Chemo-affinity of titania for the column-switching HPLC analysis of phosphopeptides. Anal Sci 20:565–566

    Article  PubMed  CAS  Google Scholar 

  22. Bodenmiller B, Mueller LN, Mueller M et al (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4:231–237

    Article  PubMed  CAS  Google Scholar 

  23. Sugiyama N, Masuda T, Shinoda K et al (2007) Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6:1103–1109

    Article  PubMed  CAS  Google Scholar 

  24. Tunesi S, Anderson M (1991) Influence of chemisorption on the photodecomposition of salicylic-acid and related-compounds using suspended TiO2 ceramic membranes. J Phys Chem 95:3399–3405

    Article  CAS  Google Scholar 

  25. Connor PA, McQuillan AJ (1999) Phosphate adsorption onto TiO2 from aqueous solutions: an in situ internal reflection infrared spectroscopic study. Langmuir 15:2916–2921

    Article  CAS  Google Scholar 

  26. Tani K, Ozawa M (1999) Investigation of chromatographic properties of titania. I. On retention behavior of hydroxyl and other substituent aliphatic carboxylic acids: Comparison with zirconia. J Liq Chromatogr Relat Technol 22:843–856

    Article  CAS  Google Scholar 

  27. Nuhse TS, Stensballe A, Jensen ON et al (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2:1234–1243

    Article  PubMed  Google Scholar 

  28. Larsen MR, Thingholm TE, Jensen ON et al (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  PubMed  CAS  Google Scholar 

  29. Jensen SS, Larsen MR (2007) Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun Mass Spectrom 21:3635–3645

    Article  PubMed  CAS  Google Scholar 

  30. Kyono Y, Sugiyama N, Imami K et al (2008) Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography. J Proteome Res 7:4585–4593

    Article  PubMed  CAS  Google Scholar 

  31. Kyono Y, Sugiyama N, Tomita M et al (2010) Chemical dephosphorylation for identification of multiply phosphorylated peptides and phosphorylation site determination. Rapid Commun Mass Spectrom 24:2277–2282

    Article  PubMed  CAS  Google Scholar 

  32. Sugiyama N, Nakagami H, Mochida K et al (2008) Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol 4:193

    Article  PubMed  Google Scholar 

  33. Nakagami H, Sugiyama N, Mochida K et al (2010) Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol 153:1161–1174

    Article  PubMed  CAS  Google Scholar 

  34. Imami K, Sugiyama N, Tomita M et al (2010) Quantitative proteome and phosphoproteome analyses of cultured cells based on SILAC labeling without requirement of serum dialysis. Mol Biosyst 6:594–602

    Article  PubMed  CAS  Google Scholar 

  35. Perkins DN, Pappin DJ, Creasy DM et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  36. Shou W, Verma R, Annan RS et al (2002) Mapping phosphorylation sites in proteins by mass spectrometry. Methods Enzymol 351:279–296

    Article  PubMed  CAS  Google Scholar 

  37. Beausoleil SA, Villen J, Gerber SA et al (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24:1285–1292

    Article  PubMed  CAS  Google Scholar 

  38. Olsen JV, Mann M (2004) Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. Proc Natl Acad Sci USA 101:13417–13422

    Article  PubMed  CAS  Google Scholar 

  39. Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    Article  PubMed  CAS  Google Scholar 

  40. Cox J, Matic I, Hilger M et al (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4:698–705

    Article  PubMed  CAS  Google Scholar 

  41. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  PubMed  CAS  Google Scholar 

  42. MacLean D, Burrell MA, Studholme DJ et al (2008) PhosCalc: a tool for evaluating the sites of peptide phosphorylation from mass ­spectrometer data. BMC Res Notes 1:30

    Article  PubMed  Google Scholar 

  43. Ruttenberg BE, Pisitkun T, Knepper MA et al (2008) PhosphoScore: an open-source phosphorylation site assignment tool for MSn data. J Proteome Res 7:3054–3059

    Article  PubMed  CAS  Google Scholar 

  44. Savitski MM, Lemeer S, Boesche M et al (2011) Confident phosphorylation site localization using the mascot delta score. Mol Cell Proteomics 10:M110 003830

    PubMed  Google Scholar 

  45. Tanner S, Shu H, Frank A et al (2005) InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. Anal Chem 77:4626–4639

    Article  PubMed  CAS  Google Scholar 

  46. Wan Y, Cripps D, Thomas S et al (2008) PhosphoScan: a probability-based method for phosphorylation site prediction using MS2/MS3 pair information. J Proteome Res 7:2803–2811

    Article  PubMed  CAS  Google Scholar 

  47. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75:663–670

    Article  PubMed  CAS  Google Scholar 

  48. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906

    Article  PubMed  CAS  Google Scholar 

  49. Eng JK, Mccormack AL, Yates JR (1994) An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  50. Imami K, Sugiyama N, Kyono Y et al (2008) Automated phosphoproteome analysis for cultured cancer cells by two-dimensional nanoLC-MS using a calcined titania/C18 biphasic column. Anal Sci 24:161–166

    Article  PubMed  CAS  Google Scholar 

  51. Kyono Y, Sugiyama N, Imami K et al (2010) Development of titania particles used for phosphopeptide enrichment in mass spectrometry-based phosphoproteomics. J Mass Spectrom Soc Jpn 58:129–138

    Article  CAS  Google Scholar 

  52. Makarov A, Denisov E, Kholomeev A et al (2006) Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem 78:2113–2120

    Article  PubMed  CAS  Google Scholar 

  53. Scigelova M, Makarov A (2006) Orbitrap mass analyzer–overview and applications in proteomics. Proteomics 6(Suppl 2):16–21

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Ishihama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ku, WC., Sugiyama, N., Ishihama, Y. (2012). Large-Scale Protein Phosphorylation Analysis by Mass Spectrometry-Based Phosphoproteomics. In: Mukai, H. (eds) Protein Kinase Technologies. Neuromethods, vol 68. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-824-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-824-5_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-823-8

  • Online ISBN: 978-1-61779-824-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics