Skip to main content

Electrophysiological Technique for Analysis of Synaptic Function of PKN1 in Hippocampus

  • Protocol
  • First Online:
  • 994 Accesses

Part of the book series: Neuromethods ((NM,volume 68))

Abstract

PKNs are serine/threonine protein kinases that have conserved catalytic domains homologous to those of protein kinase C (PKC) family members and regulatory regions containing antiparallel coiled-coil (ACC) domains and C2-like domains. PKN1 in particular is abundant in the brain, and the physiological role of this enzyme has been examined by generating PKN1 genetically modified mice and inhibitors of this enzyme. Here, we review electrophysiological techniques to analyze synaptic functions in the CA1 region of the hippocampus using these mice and inhibitors.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci USA 86(23):9574–9578

    Article  PubMed  CAS  Google Scholar 

  2. Malenka RC, Nicoll RA (1999) Long-term potentiation—a decade of progress? Science 285(5435):1870–1874

    Article  PubMed  CAS  Google Scholar 

  3. Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126

    Article  PubMed  CAS  Google Scholar 

  4. Giese KP et al (1998) Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279(5352):870–873

    Article  PubMed  CAS  Google Scholar 

  5. Barria A et al (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276(5321):2042–2045

    Article  PubMed  CAS  Google Scholar 

  6. Lee HK (2006) AMPA receptor phosphorylation in synaptic plasticity: insights from knockin mice.

    Google Scholar 

  7. Tomita S et al (2005) Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 45(2):269–277

    Article  PubMed  CAS  Google Scholar 

  8. Yasuda H et al (2003) A developmental switch in the signaling cascades for LTP induction. Nat Neurosci 6(1):15–16

    Article  PubMed  CAS  Google Scholar 

  9. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21

    Article  PubMed  CAS  Google Scholar 

  10. Kitagawa M et al (1995) Purification and characterization of a fatty acid-activated protein kinase (PKN) from rat testis. Biochem J 310(Pt 2):657–664

    PubMed  CAS  Google Scholar 

  11. Mukai H, Ono Y (1994) A novel protein kinase with leucine zipper-like sequences: its catalytic domain is highly homologous to that of protein kinase C. Biochem Biophys Res Commun 199(2):897–904

    Article  PubMed  CAS  Google Scholar 

  12. Peng B et al (1996) Phosphorylation events associated with different states of activation of a hepatic cardiolipin/protease-activated protein kinase. Structural identity to the protein kinase N-type protein kinases. J Biol Chem 271(50):32233–32240

    Article  PubMed  CAS  Google Scholar 

  13. Palmer RH, Ridden J, Parker PJ (1995) Cloning and expression patterns of two members of a novel protein-kinase-C-related kinase family. Eur J Biochem 227(1–2):344–351

    Article  PubMed  CAS  Google Scholar 

  14. Yu W et al (1997) Isolation and characterization of a structural homologue of human PRK2 from rat liver. Distinguishing substrate and lipid activator specificities. J Biol Chem 272(15):10030–10034

    Article  PubMed  CAS  Google Scholar 

  15. Oishi K et al (1999) Identification and characterization of PKNbeta, a novel isoform of protein kinase PKN: expression and arachidonic acid dependency are different from those of PKNalpha. Biochem Biophys Res Commun 261(3):808–814

    Article  PubMed  CAS  Google Scholar 

  16. Manning G et al (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934

    Article  PubMed  CAS  Google Scholar 

  17. Mukai H (2003) The structure and function of PKN, a protein kinase having a catalytic domain homologous to that of PKC. J Biochem 133(1):17–27

    Article  PubMed  CAS  Google Scholar 

  18. Hashimoto T et al (1998) Localization of PKN mRNA in the rat brain. Brain Res Mol Brain Res 59(2):143–153

    Article  PubMed  CAS  Google Scholar 

  19. Kawamata T et al (1998) A protein kinase, PKN, accumulates in Alzheimer neurofibrillary tangles and associated endoplasmic reticulum-derived vesicles and phosphorylates tau protein. J Neurosci 18(18):7402–7410

    PubMed  CAS  Google Scholar 

  20. Manser C et al (2008) Deregulation of PKN1 activity disrupts neurofilament organisation and axonal transport. FEBS Lett 582(15):2303–2308

    Article  PubMed  CAS  Google Scholar 

  21. Matsuzawa K et al (1997) Domain-specific phosphorylation of vimentin and glial fibrillary acidic protein by PKN. Biochem Biophys Res Commun 234(3):621–625

    Article  PubMed  CAS  Google Scholar 

  22. Mukai H et al (1996) PKN associates and phosphorylates the head-rod domain of neurofilament protein. J Biol Chem 271(16):9816–9822

    Article  PubMed  CAS  Google Scholar 

  23. Isagawa T et al (2000) Dual effects of PKNalpha and protein kinase C on phosphorylation of tau protein by glycogen synthase kinase-3beta. Biochem Biophys Res Commun 273(1):209–212

    Article  PubMed  CAS  Google Scholar 

  24. Taniguchi T et al (2001) Phosphorylation of tau is regulated by PKN. J Biol Chem 276(13):10025–10031

    Article  PubMed  CAS  Google Scholar 

  25. Loh SH et al (2008) Identification of new kinase clusters required for neurite outgrowth and retraction by a loss-of-function RNA interference screen. Cell Death Differ 15(2):283–298

    Article  PubMed  CAS  Google Scholar 

  26. Takahashi M et al (1998) Proteolytic activation of PKN by caspase-3 or related protease during apoptosis. Proc Natl Acad Sci USA 95(20):11566–11571

    Article  PubMed  CAS  Google Scholar 

  27. Ueyama T et al (2001) Generation of a constitutively active fragment of PKN in microglia/macrophages after middle cerebral artery occlusion in rats. J Neurochem 79(4):903–913

    Article  PubMed  CAS  Google Scholar 

  28. Sumioka K et al (2000) Induction of a 55-kDa PKN cleavage product by ischemia/reperfusion model in the rat retina. Invest Ophthalmol Vis Sci 41(1):29–35

    PubMed  CAS  Google Scholar 

  29. Okii N et al (2007) Fragmentation of protein kinase N (PKN) in the hydrocephalic rat brain. Acta Histochem Cytochem 40(4):113–121

    Article  PubMed  CAS  Google Scholar 

  30. Shiga K et al (2010) Development of an intracellularly acting inhibitory peptide selective for PKN. Biochem J 425(2):445–543

    Article  CAS  Google Scholar 

  31. Blanton MG, Lo Turco JJ, Kriegstein AR (1989) Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Methods 30(3):203–210

    Article  PubMed  CAS  Google Scholar 

  32. Liao D, Hessler NA, Malinow R (1995) Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375(6530):400–404

    Article  PubMed  CAS  Google Scholar 

  33. Isaac JT, Nicoll RA, Malenka RC (1995) Evidence for silent synapses: implications for the expression of LTP. Neuron 15(2):427–434

    Article  PubMed  CAS  Google Scholar 

  34. Morishita W, Marie H, Malenka RC (2005) Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. Nat Neurosci 8(8):1043–1050

    Article  PubMed  CAS  Google Scholar 

  35. Niisato K et al (2005) Age-dependent enhancement of hippocampal long-term potentiation and impairment of spatial learning through the Rho-associated kinase pathway in protein tyrosine phosphatase receptor type Z-deficient mice. J Neurosci 25(5):1081–1088

    Article  PubMed  CAS  Google Scholar 

  36. Castro-Alamancos MA, Connors BW (1997) Distinct forms of short-term plasticity at excitatory synapses of hippocampus and neocortex. Proc Natl Acad Sci USA 94(8):4161–4166

    Article  PubMed  CAS  Google Scholar 

  37. Schoch S et al (2002) RIM1alpha Forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415(6869):321–326

    Article  PubMed  CAS  Google Scholar 

  38. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  PubMed  CAS  Google Scholar 

  39. Beierlein M, Fioravante D, Regehr WG (2007) Differential expression of posttetanic potentiation and retrograde signaling mediate target-dependent short-term synaptic plasticity. Neuron 54(6):949–959

    Article  PubMed  CAS  Google Scholar 

  40. Greengard P et al (1993) Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259(5096):780–785

    Article  PubMed  CAS  Google Scholar 

  41. Chapman PF et al (1995) The alpha-Ca2+/calmodulin kinase II: a bidirectional modulator of presynaptic plasticity. Neuron 14(3):591–597

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Yasuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yasuda, H., Mukai, H. (2012). Electrophysiological Technique for Analysis of Synaptic Function of PKN1 in Hippocampus. In: Mukai, H. (eds) Protein Kinase Technologies. Neuromethods, vol 68. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-824-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-824-5_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-823-8

  • Online ISBN: 978-1-61779-824-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics