Skip to main content

Biolistic- and Agrobacterium-Mediated Transformation Protocols for Wheat

  • Protocol
  • First Online:
Plant Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 877))

Abstract

After rice, wheat is considered to be the most important world food crop, and the demand for high-quality wheat flour is increasing. Although there are no GM varieties currently grown, wheat is an important target for biotechnology, and we anticipate that GM wheat will be commercially available in 10–15 years. In this chapter, we summarize the main features and challenges of wheat transformation and then describe detailed protocols for the production of transgenic wheat plants both by biolistic and Agrobacterium-mediated DNA-delivery. Although these methods are used mainly for bread wheat (Triticum aestivum L.), they can also be successfully applied, with slight modifications, to tetraploid durum wheat (T. turgidum L. var. durum). The appropriate size and developmental stage of explants (immature embryo-derived scutella), the conditions to produce embryogenic callus tissues, and the methods to regenerate transgenic plants under increasing selection pressure are provided in the protocol. To illustrate the application of herbicide selection system, we have chosen to describe the use of the plasmid pAHC25 for biolistic transformation, while for Agrobacterium-mediated transformation the binary vector pAL156 (incorporating both the bar gene and the uidA gene) has been chosen. Beside the step-by-step methodology for obtaining stably transformed and normal fertile plants, procedures for screening and testing transgenic wheat plants are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vasil V et al (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10:667–674

    Article  CAS  Google Scholar 

  2. Vasil IK (2007) Molecular genetic improvement of cereals: transgenic wheat (Triticum aestivum L.). Plant Cell Rep 26:1133–1154

    Article  PubMed  CAS  Google Scholar 

  3. Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41:137–147

    Article  CAS  Google Scholar 

  4. Jones HD et al (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods 1:5

    Article  PubMed  Google Scholar 

  5. Cheng M et al (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol Plant 40:31–45

    Article  Google Scholar 

  6. Shewry PR, Jones HD (2005) Transgenic wheat: where do we stand after the first 12 years? Ann Appl Biol 147:1–14

    Article  CAS  Google Scholar 

  7. Patnaik D, Khurana P (2001) Wheat biotechnology: a minireview. Electron J Biotechnol 4:2

    Google Scholar 

  8. Barcelo P et al (2001) Transformation and gene expression. In: Shewry PR, Lazzeri PA, Edwards KJ (eds) Advances in botanical research incorporating advances in plant pathology. Academic, San Diego

    Google Scholar 

  9. Blechl AE, Jones HD (2009) Transgenic applications in wheat improvement. In: Carver BF (ed) Wheat; sciences and trade. Wiley, Iowa

    Google Scholar 

  10. Altpeter F et al (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Article  Google Scholar 

  11. Hensel G et al (2009) Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Int J Plant Genom 2009:9, Article ID 835608

    Google Scholar 

  12. Pellegrineschi A et al (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    Article  PubMed  CAS  Google Scholar 

  13. Fahim M et al (2010) Hairpin RNA derived from viral NIa gene confers immunity to wheat streak mosaic virus infection in transgenic wheat plants. Plant Biotechnol J 8:821–834

    Article  PubMed  CAS  Google Scholar 

  14. Gao SQ et al (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28:301–311

    Article  PubMed  CAS  Google Scholar 

  15. Xu ZS et al (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65:719–732

    Article  PubMed  CAS  Google Scholar 

  16. Yu Y, Wei ZM (2008) Increased oriental armyworm and aphid resistance in transgenic wheat stably expressing Bacillus thuringiensis (Bt) endotoxin and Pinellia ternate agglutinin (PTA). Plant Cell Tissue Organ Cult 94:33–44

    Article  CAS  Google Scholar 

  17. Altpeter F et al (1996) Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nat Biotechnol 14:1155–1159

    Article  PubMed  CAS  Google Scholar 

  18. Blechl AE, Anderson OD (1996) Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nat Biotechnol 14:875–879

    Article  PubMed  CAS  Google Scholar 

  19. Barro F et al (1997) Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat Biotechnol 15:1295–1299

    Article  PubMed  CAS  Google Scholar 

  20. Alvarez ML et al (2000) Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100:319–327

    Article  CAS  Google Scholar 

  21. Field JM et al (2008) Introgression of transgenes into a commercial cultivar confirms differential effects of HMW subunits 1Ax1 and 1Dx5 on gluten properties. J Cereal Sci 48:457–463

    Article  CAS  Google Scholar 

  22. Zhang XD et al (2003) Transgene inheritance and quality improvement by expressing novel HMW glutenin subunit (HMW-GS) genes in winter wheat. Chin Sci Bull 48:771–776

    Google Scholar 

  23. Bregitzer P et al (2006) Changes in high molecular weight glutenin subunit composition can be genetically engineered without affecting wheat agronomic performance. Crop Sci 46:1553–1563

    Article  CAS  Google Scholar 

  24. Anderson OD, Blechl AE (2000) Transgenic wheat—challenges and opportunities. In: O’Brian L, Henry R (eds) Transgenic cereals. AACC, St Paul

    Google Scholar 

  25. Shewry PR, Jones HD (2007) Genetic improvement of wheat quality. In: Pomeranz Y (ed) Wheat: chemistry and technology (AACC Monograph Series). American Association of Cereal Chemists, Washington

    Google Scholar 

  26. Vasil IK et al (2001) Evaluation of baking properties and gluten protein composition of field grown transgenic wheat lines expressing high molecular weight glutenin gene 1Ax1. J Plant Physiol 158:521–528

    Article  CAS  Google Scholar 

  27. Rakszegi M et al (2005) Technological quality of transgenic wheat expressing an increased amount of a HMW glutenin subunit. J Cereal Sci 42:15–23

    Article  CAS  Google Scholar 

  28. Rakszegi M et al (2008) Technological quality of field grown transgenic lines of commercial wheat cultivars expressing the 1Ax1 HMW glutenin subunit gene. J Cereal Sci 47:310–321

    Article  CAS  Google Scholar 

  29. Shewry PR et al (2006) Comparative field performance over 3 years and two sites of transgenic wheat lines expressing HMW subunit transgenes. Theor Appl Genet 113:128–136

    Article  PubMed  CAS  Google Scholar 

  30. Masci S et al (2003) Production and characterization of a transgenic bread wheat line over-expressing a low-molecular-weight glutenin subunit gene. Mol Breed 12:209–222

    Article  CAS  Google Scholar 

  31. Tosi P et al (2004) Expression of epitope-tagged LMW glutenin subunits in the starchy endosperm of transgenic wheat and their incorporation into glutenin polymers. Theor Appl Genet 108:468–476

    Article  PubMed  CAS  Google Scholar 

  32. Tosi P et al (2005) Modification of the low molecular weight (LMW) glutenin composition of transgenic durum wheat: effects on glutenin polymer size and gluten functionality. Mol Breed 16:113–126

    Article  CAS  Google Scholar 

  33. Shewry PR (2007) Improving the protein content and composition of cereal grain. J Cereal Sci 46:239–250

    Article  CAS  Google Scholar 

  34. Zhu C et al (2007) Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci 12:548–555

    Article  PubMed  CAS  Google Scholar 

  35. Regina A et al (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA 103:3546–3551

    Article  PubMed  CAS  Google Scholar 

  36. Tamas C et al (2009) Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Rep 28:1085–1094

    Article  PubMed  CAS  Google Scholar 

  37. Lamacchia C et al (2001) Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J Exp Bot 52:243–250

    Article  PubMed  CAS  Google Scholar 

  38. Wiley PR et al (2007) Promoter analysis and immunolocalisation show that puroindoline genes are exclusively expressed in starchy endosperm cells of wheat grain. Plant Mol Biol 64(1–2):125–136

    Google Scholar 

  39. Van Herpen T et al (2008) Detailed analysis of the expression of an alpha-gliadin promoter and the deposition of alpha-gliadin protein during wheat grain development. Ann Bot 102:331–342

    Article  PubMed  Google Scholar 

  40. Oszvald M et al (2008) Development and charatcterization of a chimaeric tissue-specific promoter in wheat and rice endosperm. In Vitro Cell Dev Biol Plant 44:1–7

    CAS  Google Scholar 

  41. Stoger E et al (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 42:583–590

    Article  PubMed  CAS  Google Scholar 

  42. Sparks CA, Jones HD (2004) Transformation of wheat by biolistics. In: Curtis IP (ed) Transgenic crops of the world—essential protocols. Kluwer Academic, Dordrecht

    Google Scholar 

  43. Tamas C et al (2004) Effect of combined changes in culture medium and incubation conditions on the regeneration from immature embryos of elite varieties of winter wheat. Plant Cell Tissue Organ Cult 79:39–44

    Article  CAS  Google Scholar 

  44. Wu HX et al (2008) Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L-var. durum) using additional virulence genes. Transgenic Res 17:425–436

    Article  PubMed  CAS  Google Scholar 

  45. Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  PubMed  CAS  Google Scholar 

  46. Lazo GR et al (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio/Technology 9:963–967

    Article  PubMed  CAS  Google Scholar 

  47. Hellens RP et al (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  PubMed  CAS  Google Scholar 

  48. Komari T (1990) Transformation of cultured-cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep 9:303–306

    Article  CAS  Google Scholar 

  49. Komari T et al (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  PubMed  CAS  Google Scholar 

  50. Garfinkel DJ, Nester EW (1980) Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol 144:732–743

    PubMed  CAS  Google Scholar 

  51. RascoGaunt S, Barcelo P (1999) Immature inflorescence culture of cereals: a highly responsive system for regeneration and transformation. In: Hall R (ed) Methods in molecular biology—plant cell culture protocols. Humana, Totowa

    Google Scholar 

  52. He GY, Lazzeri PA (2001) Improvement of somatic embryogenesis and plant regeneration from durum wheat (Triticum turgidum var. durum Desf.) scutellum and inflorescence cultures. Euphytica 119:369–376

    Article  CAS  Google Scholar 

  53. Barcelo P et al (1994) Transgenic cereal (Tritordeum) plants obtained at high-efficiency by microprojectile bombardment of inflorescence tissue. Plant J 5:583–592

    Article  PubMed  CAS  Google Scholar 

  54. Rasco-Gaunt S et al (1999) Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep 19:118–127

    Article  CAS  Google Scholar 

  55. Stacey J, Isaac P (1994) Isolation of DNA from plants. In: Isaac P (ed) Methods in molecular biology—protocols for nucleic acid analysis by nonradioactive probes. Humana, Totowa

    Google Scholar 

Download references

Acknowledgements

László Tamás is in receipt of grants from the Hungarian Scientific Research Fund (OTKA T 46703 and 67844) and of the Bilateral Intergovernmental Science and Technology Cooperation (KR-1/2007). Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Tamás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tamás-Nyitrai, C., Jones, H.D., Tamás, L. (2012). Biolistic- and Agrobacterium-Mediated Transformation Protocols for Wheat. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology, vol 877. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-818-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-818-4_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-817-7

  • Online ISBN: 978-1-61779-818-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics