Skip to main content

Basic Procedures for Epigenetic Analysis in Plant Cell and Tissue Culture

  • Protocol
  • First Online:
Plant Cell Culture Protocols

Abstract

In vitro culture is one of the most studied techniques, and it is used to study many developmental processes, especially in forestry species, because of growth timing and easy manipulation. Epigenetics has been shown as an important influence on many research analyses such as cancer in mammals and developmental processes in plants such as flowering, but regarding in vitro culture, techniques to study DNA methylation or chromatin modifications were mainly limited to identify somaclonal variation of the micropropagated material. Because in vitro culture is not only a way to generate plant material but also a bunch of differentially induced developmental processes, an approach of techniques and some research carried out to study the different changes regarding DNA methylation and chromatin and translational modifications that take place during these processes is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abarca D, Díaz-Sala C (2009) Reprogramming adult cells during organ regeneration in forest species. Plant Signal Behav 4:793–795

    PubMed  Google Scholar 

  2. Bhalla P, Singh M (2006) Molecular control of stem cell maintenance in shoot apical meristem. Plant Cell Rep 25:249–256

    PubMed  CAS  Google Scholar 

  3. Law RD, Suttle JC (2005) Chromatin remodeling in plant cell culture: patterns of DNA methylation and histone H3 and H4 acetylation vary during growth of asynchronous potato cell suspensions. Plant Physiol Biochem 43:527–534

    PubMed  CAS  Google Scholar 

  4. Pischke MS, Huttlin EL, Hegeman AD, Sussman MR (2006) A transcriptome-based characterization of habituation in plant tissue culture. Plant Physiol 140:1255

    PubMed  CAS  Google Scholar 

  5. Grandbastien M (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci 3:181–187

    Google Scholar 

  6. Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    PubMed  CAS  Google Scholar 

  7. Martienssen RA, Kloc A, Slotkin RK, Tanurdzic M (2008) Epigenetic inheritance and reprogramming in plants and fission yeast. In: Cold Spring Harbor Symp Quant Biol. Cold Spring Harbor Laboratory Press, pp 265–271

    Google Scholar 

  8. Costa S, Shaw P (2007) ‘Open minded’ cells: how cells can change fate. Trends Cell Biol 17:101–106

    PubMed  CAS  Google Scholar 

  9. Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286:481

    PubMed  CAS  Google Scholar 

  10. Li G, Hall TC, Holmes-Davis R (2002) Plant chromatin: development and gene control. Bioessays 24:234–243

    PubMed  CAS  Google Scholar 

  11. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    PubMed  CAS  Google Scholar 

  12. Okitsu CY, Hsieh CL (2007) DNA methylation dictates histone H3K4 methylation. Mol Cell Biol 27:2746

    PubMed  CAS  Google Scholar 

  13. Tariq M, Paszkowski J (2004) DNA and histone methylation in plants. Trends Genet 20:244–251

    PubMed  CAS  Google Scholar 

  14. Thomas AJ, Sherratt HSA (1956) The isolation of nucleic acid fractions from plant leaves and their purine and pyrimidine composition. Biochem J 62:1–4

    PubMed  CAS  Google Scholar 

  15. Wyatt GR (1951) Recognition and estimation of 5-methylcytosine in nucleic acids. Biochem J 48:581

    PubMed  CAS  Google Scholar 

  16. Finnegan EJ, Kovac KA (2000) Plant DNA methyltransferases. Plant Mol Biol 43:189–201

    PubMed  CAS  Google Scholar 

  17. Gruenbaum Y, Naveh-Many T, Cedar H, Razin A (1981) Sequence specificity of methylation in higher plant DNA. Nature 292:860–862

    PubMed  CAS  Google Scholar 

  18. Bowler C, Benvenuto G, Laflamme P et al (2004) Chromatin techniques for plant cells. Plant J 39:776–789

    PubMed  CAS  Google Scholar 

  19. Fraga MF, Esteller M (2002) DNA methylation: a profile of methods and applications. Biotechniques 33:632–649

    PubMed  CAS  Google Scholar 

  20. Fraga MF, Cañal MJ, Rodríguez R (2002) Phase change related epigenetic and physiological changes in Pinus radiata D. Don. Planta 215:672–676

    PubMed  CAS  Google Scholar 

  21. Jaligot E, Rival A, Beule T et al (2000) Somaclonal variation in oil palm (Elaeis guineensis Jacq.): the DNA methylation hypothesis. Plant Cell Rep 19:684–690

    CAS  Google Scholar 

  22. Causevic A, Delaunay A, Ounnar S et al (2005) DNA methylating and demethylating treatments modify phenotype and cell wall differentiation state in sugarbeet cell lines. Plant Physiol Biochem 43:681–691

    PubMed  CAS  Google Scholar 

  23. Fraga MF, Rodríguez R, Cañal MJ (2000) Rapid quantification of DNA methylation by high performance capillary electrophoresis. Electrophoresis 21:2990–2994

    PubMed  CAS  Google Scholar 

  24. Hasbún R, Valledor L, Rodríguez JL et al (2008) HPCE quantification of 5-methyl-2′-deoxycytidine in genomic DNA: methodological optimization for chestnut and other woody species. Plant Physiol Biochem 46:815–822

    PubMed  Google Scholar 

  25. Johnston JW, Harding K, Bremner DH et al (2005) HPLC analysis of plant DNA methylation: a study of critical methodological factors. Plant Physiol Biochem 43:844–853

    PubMed  CAS  Google Scholar 

  26. Magaña AA, Wrobel K, Caudillo YA et al (2008) High-performance liquid chromatography determination of 5-methyl-2′-deoxycytidine, 2′-deoxycytidine, and other deoxynucleosides and nucleosides in DNA digests. Anal Biochem 374:378–385

    PubMed  Google Scholar 

  27. Valledor L, Meijón M, Hasbún R et al (2009) Variations in DNA methylation, acetylated histone H4, and methylated histone H3 during Pinus radiata needle maturation in relation to the loss of in vitro organogenic capability. J Plant Physiol 167:351–357

    Google Scholar 

  28. Fraga MF, Cañal MJ, Aragones A, Rodriguez R (2002) Factors involved in Pinus radiata D. Don. micrografting. Ann For Sci 59:155–161

    Google Scholar 

  29. Hasbún R, Valledor L, Berdasco M et al (2007) Dynamics of DNA methylation during chestnut trees development, Application to breeding programs. Act Hort 760:563

    Google Scholar 

  30. Viejo M, Rodríguez R, Valledor L et al (2010) DNA methylation during sexual embryogenesis and implications on the induction of somatic embryogenesis in Castanea sativa Miller. Sex Plant Reprod 23:315–323

    PubMed  CAS  Google Scholar 

  31. Baurens FC, Nicolleau J, Legavre T et al (2004) Genomic DNA methylation of juvenile and mature Acacia mangium micropropagated in vitro with reference to leaf morphology as a phase change marker. Tree Physiol 24:401–407

    PubMed  CAS  Google Scholar 

  32. Marum LM, Hasbún R, Rodriguez R et al (2008) Epigenetic Studies in Embryogenic Culture of Pinus pinaster. In: Laamanen J, Uosukainen M, Häggman H et al (eds) Cryoperservation of crop species in Europe. COST Action 871, Oulu, Finland, p 69

    Google Scholar 

  33. Bionti MB, Cozza R, Chiappetta A et al (2002) Distinct nuclear organization, DNA methylation pattern and cytokinin distribution mark juvenile, juvenile-like and adult vegetative apical meristems in peach (Prunus persica (L.) Batsch). J Exp Bot 53:1047–1054

    Google Scholar 

  34. Fraga MF, Rodríguez R, Cañal MJ (2002) Genomic DNA methylation-demethylation during ageing-reinvigoration of Pinus radiata. Tree Physiol 22:813–816

    PubMed  CAS  Google Scholar 

  35. Monteuuis O, Doulbeau S, Verdeil JL (2008) DNA methylation in different origin clonal offspring from a mature Sequoiadendron giganteum genotype. Trees Struct Funct 22:779–784

    CAS  Google Scholar 

  36. Zluvova J, Janousek B, Vyskot B (2001) Immunoshistochemical study of DNA methylation dynamics during plant development. J Exp Bot 52:2265–2273

    PubMed  CAS  Google Scholar 

  37. Meijon M, Feito I, Valledor L et al (2010) Dynamics of DNA methylation and Histone H 4 acetylation during floral bud differentiation in azalea. BMC Plant Biol 10:10

    PubMed  Google Scholar 

  38. Meijón M, Rodríguez R, Jesús Cañal M, Feito I (2009) Improvement of compactness and floral quality in azalea by means of application of plant growth regulators. Sci Hortic 119:169–176

    Google Scholar 

  39. Zhao Y, Zhou Y, Grout BWW (2008) Alterations in flower and seed morphologies and meiotic chromosome behaviors of micropropagated rhubarb (Rheum rhaponticum L.) PC49′. Sci Hortic 116:162–168

    CAS  Google Scholar 

  40. Santamaría ME, Hasbún R, Valera MJ et al (2009) Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa. J Plant Physiol 166:1360–1369

    PubMed  Google Scholar 

  41. Bordallo PN, Silva DH, Maria J et al (2004) Somaclonal variation on in vitro callus culture potato cultivars. Hortic Bras 22:300–304

    Google Scholar 

  42. Côte FX, Teisson C, Perrier X (2001) Somaclonal variation rate evolution in plant tissue culture: contribution to understanding through a statistical approach. In Vitro Cell Dev Biol Plant 37:539–542

    Google Scholar 

  43. Huang THM, Perry MR, Laux DE (1999) Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet 8:459

    PubMed  CAS  Google Scholar 

  44. He X, Chang S, Zhang J et al (2008) Methy cancer: the database of human DNA methylation and cancer. Nucleic Acids Res 36:D836–D841

    PubMed  CAS  Google Scholar 

  45. Schumacher A, Kapranov P, Kaminsky Z et al (2006) Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res 34:528–542

    PubMed  CAS  Google Scholar 

  46. Jaligot E, Beulé T, Rival A (2002) Methylation-sensitive RFLPs: characterisation of two oil palm markers showing somaclonal variation-associated polymorphism. Theor Appl Genet 104:1263–1269

    PubMed  CAS  Google Scholar 

  47. Gonzalgo ML, Liang G, Spruck CH et al (1997) Identification and characterization of differentially methylated regions of genomic DNA by methylation-sensitive arbitrarily primed PCR. Cancer Res 57:594

    PubMed  CAS  Google Scholar 

  48. Park SY, Murthy HN, Chakrabarthy D, Paek KY (2009) Detection of epigenetic variation in tissue-culture-derived plants of Doritaenopsis by methylation-sensitive amplification polymorphism (MSAP) analysis. In Vitro Cell Dev Biol Plant 45:104–108

    CAS  Google Scholar 

  49. Causevic A, Gentil MV, Delaunay A et al (2006) Relationship between DNA methylation and histone acetylation levels, cell redox and cell differentiation states in sugarbeet lines. Planta 224:812–827

    PubMed  CAS  Google Scholar 

  50. Oh TJ, Cullis MA, Kunert K et al (2007) Genomic changes associated with somaclonal variation in banana (Musa spp.). Physiol Plant 129:766–774

    CAS  Google Scholar 

  51. Rauch T, Pfeifer GP (2005) Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Lab Invest 85:1172–1180

    PubMed  CAS  Google Scholar 

  52. Weber M, Davies JJ, Wittig D et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    PubMed  CAS  Google Scholar 

  53. Rauch TA, Pfeifer GP (2010) DNA methylation profiling using the methylated-CpG island recovery assay (MIRA). Methods 52:213–217

    PubMed  CAS  Google Scholar 

  54. Weng YI, Huang TH, Yan PS (2009) Methylated DNA immunoprecipitation and microarray-based analysis: detection of DNA methylation in breast cancer cell lines. Methods Mol Biol 590:165

    PubMed  CAS  Google Scholar 

  55. Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25:2532

    PubMed  CAS  Google Scholar 

  56. Clark SJ, Frommer M (1995) Deamination with NaHSO3 in DNA methylation studies, DNA and nucleoprotein structure in vivo. Springer Verlag, Heidelberg, Germany, pp 123–135

    Google Scholar 

  57. Gonzalgo ML, Liang G (2007) Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) for quantitative measurement of DNA methylation. Nat Protoc 2:1931–1936

    PubMed  CAS  Google Scholar 

  58. Gitan RS, Shi H, Chen CM et al (2002) Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res 12:158

    PubMed  CAS  Google Scholar 

  59. Herman J, Graff J, Myöhänen S et al (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826

    PubMed  CAS  Google Scholar 

  60. Eads CA, Danenberg KD, Kawakami K et al (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28:E32

    PubMed  CAS  Google Scholar 

  61. Afonina I, Zivarts M, Kutyavin I et al (1997) Efficient priming of PCR with short oligonucleotides conjugated to a minor groove binder. Nucleic Acids Res 25:2657

    PubMed  CAS  Google Scholar 

  62. Zeschnigk M, Böhringer S, Price EA et al (2004) A novel real-time PCR assay for quantitative analysis of methylated alleles (QAMA): analysis of the retinoblastoma locus. Nucleic Acids Res 32:e125

    PubMed  Google Scholar 

  63. Frommer M, McDonald LE, Millar DS et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89:1827–1831

    PubMed  CAS  Google Scholar 

  64. Tusnády GE, Simon I, Váradi A, Tamás A (2005) BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Res 33:e9

    PubMed  Google Scholar 

  65. Berdasco M, Alcázar R, García-Ortiz MV et al (2008) Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells. PLoS One 3:e3306. doi:10.1371/journal.pone.0003306

    PubMed  Google Scholar 

  66. Ngezahayo F, Xu C, Wang H et al (2009) Tissue culture-induced transpositional activity of mPing is correlated with cytosine methylation in rice. BMC Plant Biol 9:91

    PubMed  Google Scholar 

  67. Dupont J, Tost T, Jammes H, Gut IG (2004) De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem 333:119–127

    PubMed  CAS  Google Scholar 

  68. Xiao W, Oefner PJ (2001) Denaturing high performance liquid chromatography: a review. Hum Mutat 17:439–474

    PubMed  CAS  Google Scholar 

  69. Deng D, Deng G, Smith MF et al (2002) Simultaneous detection of CpG methylation and single nucleotide polymorphism by denaturing high performance liquid chromatography. Nucleic Acids Res 30:e13

    PubMed  Google Scholar 

  70. Wagner D (2003) Chromatin regulation of plant development. Curr Opin Plant Biol 6:20–28

    PubMed  CAS  Google Scholar 

  71. Jarillo JA, Piñeiro M, Cubas P, Martínez-Zapater JM (2009) Chromatin remodeling in plant development. Int J Dev Biol 53:1581–1596

    PubMed  CAS  Google Scholar 

  72. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    PubMed  CAS  Google Scholar 

  73. Freitas MA, Sklenar AR, Parthun MR (2004) Application of mass spectrometry to the identification and quantification of histone post translational modifications. J Cell Biochem 92:691–700

    PubMed  CAS  Google Scholar 

  74. Valledor L, Meijón M, Hasbún R et al (2010) Variations in DNA methylation, acetylated histone H4, and methylated histone H3 during Pinus radiata needle maturation in relation to the loss of in vitro organogenic capability. J Plant Physiol 167:351–357

    PubMed  CAS  Google Scholar 

  75. Garcia BA, Shabanowitz J, Hunt DF (2007) Characterization of histones and their post-translational modifications by mass spectrometry. Curr Opin Chem Biol 11:66–73

    PubMed  CAS  Google Scholar 

  76. Gurley LR, Valdez JG, Prentice DA, Spall WD (1983) Histone fractionation by high-performance liquid chromatography. Anal Biochem 129:132–144

    PubMed  CAS  Google Scholar 

  77. Olsen JV, Mann M (2004) Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. Proc Natl Acad Sci USA 101:13417

    PubMed  CAS  Google Scholar 

  78. Siuti N, Kelleher NL (2007) Decoding protein modifications using top-down mass spectrometry. Nat Methods 4:817–821

    PubMed  CAS  Google Scholar 

  79. Thiede B, Höhenwarter W, Krah A et al (2005) Peptide mass fingerprinting. Methods 35:237–247

    PubMed  CAS  Google Scholar 

  80. Saleh A, Alvarez-Venegas R, Yilmaz M et al (2008) The highly similar Arabidopsis homologs of trithorax ATX1 and ATX2 encode proteins with divergent biochemical functions. Plant Cell 20:568

    PubMed  CAS  Google Scholar 

  81. Haring M, Offermann S, Danker T et al (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3:11

    PubMed  Google Scholar 

  82. Reimer J, Turck F (2010) Genome-wide mapping of protein-DNA interaction by chromatin immunoprecipitation and DNA microarray hybridization (ChIP-chip). Part A: ChIP-chip molecular methods. In: Kovalchuk I, Zemp F (eds) Plant epigenetics: methods and protocols. Springer, Hatfeld, pp 139–160

    Google Scholar 

  83. Ricardi MM, González RM, Iusem ND (2010) Protocol: fine-tuning of a Chromatin Immunoprecipitation(ChIP) protocol in tomato. Plant Methods 6:11

    PubMed  Google Scholar 

  84. Kim TH, Ren B (2006) Genome-wide analysis of protein-DNA interactions. Annu Rev Genomics Hum Genet 7:81–102

    PubMed  Google Scholar 

  85. Roh T, Ngau WC, Cui K et al (2004) High-resolution genome-wide mapping of histone modifications. Nat Biotechnol 22:1013–1016

    PubMed  CAS  Google Scholar 

  86. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484

    PubMed  CAS  Google Scholar 

  87. Impey S, McCorkle SR, Cha-Molstad H et al (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119:1041–1054

    PubMed  CAS  Google Scholar 

  88. Marinescu VD, Kohane IS, Kim TK et al (2006) START: an automated tool for serial analysis of chromatin occupancy data. Bioinformatics 22:999

    PubMed  CAS  Google Scholar 

  89. Ng P, Wei CL, Sung WK et al (2005) Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat Methods 2:105–111

    PubMed  CAS  Google Scholar 

  90. Schones DE, Zhao K (2008) Genome-wide approaches to studying chromatin modifications. Nat Rev Genet 9:179–191

    PubMed  CAS  Google Scholar 

  91. Buck MJ, Lieb JD (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83:349–360

    PubMed  CAS  Google Scholar 

  92. Charron JBF, He H, Elling AA, Deng XW (2009) Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis. Plant Cell 21:3732–3748

    PubMed  CAS  Google Scholar 

  93. Park PJ (2009) ChIP–seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    PubMed  CAS  Google Scholar 

  94. Rhodes D, Giraldo R (1995) Telomere structure and function. Curr Opin Struct Biol 5:311–322

    PubMed  CAS  Google Scholar 

  95. Rossetti L, Cacchione S, Fua M, Savino M (1998) Nucleosome assembly on telomeric sequences. Biochemistry 37:6727–6737

    PubMed  CAS  Google Scholar 

  96. Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10:161–172

    PubMed  CAS  Google Scholar 

  97. Tirosh I, Barkai N (2008) Two strategies for gene regulation by promoter nucleosomes. Genome Res 18:1084

    PubMed  CAS  Google Scholar 

  98. Pecinka A, Dinh HQ, Baubec T et al (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:3118–3129

    PubMed  CAS  Google Scholar 

  99. Kumar SV, Wigge PA (2010) H2A. Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140:136–147

    PubMed  CAS  Google Scholar 

  100. Dennis JH, Fan HY, Reynolds SM et al (2007) Independent and complementary methods for large-scale structural analysis of mammalian chromatin. Genome Res 17:928

    PubMed  CAS  Google Scholar 

  101. Mukhopadhyay A, Deplancke B, Walhout AJM et al (2008) Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans. Nat Protoc 3:698–709

    PubMed  CAS  Google Scholar 

  102. Valouev A, Johnson DS, Sundquist A et al (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods 5:829–834

    PubMed  CAS  Google Scholar 

  103. Kim VN (2005) Small RNAs: classification, biogenesis, and function. Mol Cells 19:1–15

    PubMed  CAS  Google Scholar 

  104. Reinhart BJ, Weinstein EG, Rhoades MW et al (2004) MicroRNAs in plants. Genes Dev 16:1616–1626

    Google Scholar 

  105. Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31–S36

    PubMed  CAS  Google Scholar 

  106. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    PubMed  CAS  Google Scholar 

  107. Rhoades MW, Reinhart BJ, Lim LP et al (2002) Prediction of plant microRNA targets. Cell 110:513–520

    PubMed  CAS  Google Scholar 

  108. Tanurdzic M, Vaughn MW, Jiang H et al (2008) Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 6:e302

    Google Scholar 

  109. Yakovlev IA, Fossdal CG, Johnsen Ø (2010) MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce. New Phytol 187:1154–1169

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rodríguez, J.L. et al. (2012). Basic Procedures for Epigenetic Analysis in Plant Cell and Tissue Culture. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology, vol 877. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-818-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-818-4_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-817-7

  • Online ISBN: 978-1-61779-818-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics