Skip to main content

Epigenetics, the Role of DNA Methylation in Tree Development

  • Protocol
  • First Online:
Plant Cell Culture Protocols

Abstract

During development of multicellular organisms, cells become differentiated by modulating different programs of gene expression. Cells have their own epigenetic signature which reflects genotype, developmental history, and environmental influences, and it is ultimately reflected in the phenotype of the cells and the organism. However, in normal development or disease situations, such as adaptation to climate change or during in vitro culture, some cells undergo major epigenetic reprogramming involving the removal of epigenetic marks in the nuclei followed by the establishment of a different new set of marks. Compared with animal cells, biotech-mediated achievements are reduced in plants despite the presence of cell polypotency. In forestry, any sustainable developments using biotech tools remain restricted to the lab, without progressing to the field for application. Such barriers in the translation between development and implementation need to be addressed by organizations that have the power to integrate these two fields. However, a lack of understanding of gene regulation is also to blame for this barrier. In recent years, great progress has been made in unraveling the control of gene expression. These advances are discussed in this chapter, including the possibility of applying this knowledge in forestry practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Surani MA, Durcova-Hills G, Hajkova P et al (2008) Germ line, stem cells, and epigenetic reprogramming. CSH Symp Quant Biol 73:9–15

    CAS  Google Scholar 

  2. Morgan HD, Santos F, Green K et al (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14:47–58

    Google Scholar 

  3. Valledor L, Hasbún R, Meijón M et al (2007) Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tissue Organ Cult 91:75–86

    CAS  Google Scholar 

  4. Grant-Downton RT, Dickinson HG (2005) Epigenetic and its implications for plant biology 1. The epigenetic network in plants. Ann Bot 96:1143–1164

    PubMed  CAS  Google Scholar 

  5. Lanzuolo C, Orlando V (2007) The function of the epigenome in cell reprogramming. Cell Mol Life Sci 64:1043–1062

    PubMed  CAS  Google Scholar 

  6. Tariq M, Paszkowski J (2004) DNA and histone methylation in plants. Trends Genet 20(6):244–251

    PubMed  CAS  Google Scholar 

  7. Vanyushin BF (2005) Enzymatic DNA methylation is an epigenetic control for genetic functions of the cell. Biochemistry 70:597–603

    Google Scholar 

  8. Zhang M, Kimatu JN, Xu K et al (2010) DNA cytosine methylation in plant development. J Genet Genomics 37:1–12

    PubMed  Google Scholar 

  9. Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    PubMed  CAS  Google Scholar 

  10. Zheng X, Pontes O, Zhu J et al (2008) ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature 455:1259–1262

    PubMed  CAS  Google Scholar 

  11. Zhang X, Yazaki J, Sundaresan A et al (2006) Genomewide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    PubMed  CAS  Google Scholar 

  12. Chen M, Lv S, Meng Y (2010) Epigenetic performers in plants. Dev Growth Differ 52:555–566

    PubMed  CAS  Google Scholar 

  13. Berdasco M, Alcázar R, García-Ortiz MV et al (2008) Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells. PLoS One 3(10):e3306. doi:10.1371/journal.pone.0003306

    PubMed  Google Scholar 

  14. Tran RK, Henikoff JG, Zilberman D et al (2005) DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Curr Biol 15:154–159

    PubMed  CAS  Google Scholar 

  15. Woo HR, Dittmer TA, Richards EJ (2008) Three SRA-Domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis. PLoS Genet 4(8):e1000156. doi:10.1371/journal.pgen.1000156

    PubMed  Google Scholar 

  16. Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    PubMed  CAS  Google Scholar 

  17. Kouzarides T (2007) Chromatin modification and their function. Cell 128:693–705

    PubMed  CAS  Google Scholar 

  18. Zluvova J, Janousek B, Vyskot B (2001) Immunohistochemical study of DNA methylation dynamics during plant development. J Exp Bot 365:2265–2273

    Google Scholar 

  19. Klimaszewska K, Noceda C, Pelletier G et al (2009) Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait.). In Vitro Cell Dev Biol Plant 45:20–33

    Google Scholar 

  20. Steimer A, Schob H, Grossniklaus U (2004) Epigenetic control of plant development: new layers of complexity. Curr Opin Plant Biol 7:11–19

    PubMed  CAS  Google Scholar 

  21. Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA 93:8449–8454

    PubMed  CAS  Google Scholar 

  22. Blázquez MA, Ferrándiz C, Madueño F et al (2006) How floral meristems are built. Plant Mol Biol 60:855–870

    PubMed  Google Scholar 

  23. Wilkie JD, Sedgley M, Olesen T (2008) Regulation of floral initiation in horticultural trees. J Exp Bot 59:3215–3228

    PubMed  CAS  Google Scholar 

  24. Blázquez MA, Weigel D (2000) Integration of floral inductive signals in Arabidopsis. Nature 404:889–892

    PubMed  Google Scholar 

  25. Henderson IR, Dean C (2004) Control of Arabidopsis flowering: the chill before the bloom. Development 131:3829–3838

    PubMed  CAS  Google Scholar 

  26. Dennis ES, Peacock WJ (2007) Epigenetic regulation of flowering. Curr Opin Plant Biol 10:520–527

    PubMed  CAS  Google Scholar 

  27. Jacqmard A, Gadisseur I, Bernier G (2003) Cell division and morphological changes in the shoot apex of Arabidopsis thaliana during floral transition. Ann Bot 91:571–576

    PubMed  CAS  Google Scholar 

  28. Tooke F, Battey N (2003) Models of shoot apical meristem function. New Phytol 159:37–52

    CAS  Google Scholar 

  29. Ruiz-García L, Cervera MT, Martínez-Zapater JM (2005) DNA methylation increases throughout Arabidopsis development. Planta 222:301–306

    PubMed  Google Scholar 

  30. Vijayraghavan U, Prasad K, Meyerowitz E (2005) Specification and maintenance of the floral meristem: interactions between positively-acting promoters of flowering and negative regulators. Curr Sci 89:1835–1843

    Google Scholar 

  31. Farrona S, Coupland G, Turck F (2008) The impact of chromatin regulation on the floral transition. Semin Cell Dev Biol 19:560–573

    PubMed  CAS  Google Scholar 

  32. Exner V, Hennig L (2008) Chromatin rearrangements in development. Curr Opin Plant Biol 11:64–69

    PubMed  CAS  Google Scholar 

  33. Pfluger J, Wagner D (2007) Histone modification and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol 10:645–652

    PubMed  CAS  Google Scholar 

  34. Meijón M, Valledor L, Rodríguez JL et al (2008) Plant epigenetics. In: Esteller M (ed) Epigenetics in biology and medicine. CRC, Boca Raton, FL, pp 225–240

    Google Scholar 

  35. Finnegan EJ, Kovac KA, Jaligot E et al (2005) The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. Plant J 44:420–432

    CAS  Google Scholar 

  36. He Y, Amasino RM (2005) Role of chromatin modification in flowering-time control. Trends Plant Sci 10:30–35

    PubMed  CAS  Google Scholar 

  37. Mathieu O, Reinders J, Caikovski M et al (2007) Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell 130:851–862

    PubMed  CAS  Google Scholar 

  38. Tessadori F, Kees Schulkes R, Van Driel R et al (2007) Light-regulated large-scale reorganization of chromatin during the floral transition in Arabidopsis. Plant J 50:848–857

    PubMed  CAS  Google Scholar 

  39. Tessadori F, Van Driel R, Fransz P (2004) Cytogenetics as a tool to study gene regulation. Trends Plant Sci 9:147–153

    PubMed  CAS  Google Scholar 

  40. Grant-Downton RT, Dickinson HG (2006) Epigenetics and its implications for plant biology 2. The ‘epigenetic epiphany’: epigenetics, evolution and beyond. Ann Bot 97:11–27

    PubMed  CAS  Google Scholar 

  41. Vaillant I, Paszkowski J (2007) Role of histone and DNA methylation in gene regulation. Curr Opin Plant Biol 10:528–533

    PubMed  CAS  Google Scholar 

  42. Meijón M, Valledor L, Santamaría E et al (2009) Epigenetic characterization of the vegetative and floral stages of azalea buds: dynamics of DNA methylation and histone H4 acetylation. J Plant Physiol 166:1360–1369

    PubMed  Google Scholar 

  43. Meijón M, Feito I, Valledor L et al (2010) Dynamic of DNA methylation and Histone H4 acetylation during floral bud differentiation in azalea. BMC Plant Biol 10:10. doi:10.1186/1471-2229-10-10

    PubMed  Google Scholar 

  44. Albert M, Peters AH (2009) Genetic and epigenetic control of early mouse development. Curr Opin Genet Dev 19:113–121

    PubMed  CAS  Google Scholar 

  45. Jullien PE, Berger F (2010) DNA methylation reprogramming during plant sexual reproduction? Trends Genet 9:394–399

    Google Scholar 

  46. Oakeley EJ, Podesta A, Jost JP (1997) Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proc Natl Acad Sci USA 94:11721–11725

    PubMed  CAS  Google Scholar 

  47. Viejo M, Rodríguez R, Valledor L et al (2010) DNA methylation during sexual embryogenesis and implications on the induction of somatic embryogenesis in Castanea sativa Miller. Sex Plant Reprod 23:315–323

    PubMed  CAS  Google Scholar 

  48. Xiao W, Custard KD, Brown RC et al (2006) DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 18:805–814

    PubMed  CAS  Google Scholar 

  49. Haque AK, Yamaoka N, Nishiguchi M (2007) Cytosine methylation is associated with RNA silencing in silenced plants but not with systemic and transitive RNA silencing through grafting. Gene 326:321–331

    Google Scholar 

  50. Takeda S, Paszkowski J (2006) DNA methylation and epigenetic inheritance during plant gametogenesis. Chromosoma 115:27–35

    PubMed  CAS  Google Scholar 

  51. Chonga S, Whitelawa E (2004) Epigenetic germline inheritance. Curr Opin Genet Dev 14:692–696

    Google Scholar 

  52. Grossniklaus U (2005) Genomic imprinting in plants: a predominantly maternal affair. In: Meyer P (ed) Plant epigenetics. Blackwell, Oxford

    Google Scholar 

  53. Kermicle JL (1970) Dependence of the R-mottle aleurone phenotype in maize on mode of sexual transmission. Genetics 66:69–85

    PubMed  CAS  Google Scholar 

  54. Mc Grath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    CAS  Google Scholar 

  55. Feil R, Berger F (2007) Convergent evolution of genomic imprinting in plants and mammals. Trends Gen 23:192–199

    CAS  Google Scholar 

  56. Scott RJ, Spielman M (2006) Genomic imprinting in plants and mammals: how life history constrains convergence. Cytogenet Genome Res 113:53–67

    PubMed  CAS  Google Scholar 

  57. Kinoshita T, Miura A, Choi Y et al (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303:521–523

    PubMed  CAS  Google Scholar 

  58. Park S, Harada JJ (2008) Arabidopsis embryogenesis. Methods Mol Biol 427:3–16

    PubMed  CAS  Google Scholar 

  59. Choi Y, Gehring M, Johnson L et al (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42

    PubMed  CAS  Google Scholar 

  60. Von Arnold S, Sabala I, Bozhkov P et al (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249

    Google Scholar 

  61. Dudits D, Bögre L, Gyögyey J (1991) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J Cell Sci 99:475–484

    Google Scholar 

  62. Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Google Scholar 

  63. Reinert J (1958) Morphogenese und ihre kont rolle on Gewebekulturen auscarotten. Naturwiessenschaften 45:344–345

    CAS  Google Scholar 

  64. Brown DCW, Finstad KI, Watson EM (1995) Somatic embryogenesis in herbaceous species. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, pp 345–415

    Google Scholar 

  65. Dunstan DI, Tautorus TE, Thorpe TA (1995) Somatic embryogenesis in woody plants. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluver, Dordrecht, pp 471–541

    Google Scholar 

  66. Thorpe TA, Stasolla C (2001) Somatic embryogenesis. In: Bhojwani SS, Soh WH (eds) Current trends in the embryology of angiosperms. Kluver, Dordrecht

    Google Scholar 

  67. Salajova T, Rodríguez R, Cañal MJ et al (2005) Protocol of somatic embryogenesis of Pinus nigra Arn. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Dordrecht

    Google Scholar 

  68. Toribio M, Celestino C, Molinas M (2005) Cork oak, Quercus suber L. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Dordrecht

    Google Scholar 

  69. Tremblay FM, Iraqi D, El Meskaoui A (2005) Protocol of somatic embryogenesis: Black spruce (Picea mariana (Mill.) B.S.P). In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Dordrecht

    Google Scholar 

  70. Sharp WR, Sondahl MR, Caldas LS (1980) The physiology of in vitro asexual embryogenesis. In: Janick J (ed) Horticultural reviews, vol 2. AVI, Westport, CT

    Google Scholar 

  71. Kiyosue T, Kamada H, Harada H (1989) Induction of somatic embryogenesis by salt stress in carrot. Plant Tissue Cult Lett 6:162–164

    Google Scholar 

  72. Van Zyl L, Bozhkov P, Clapham D et al (2002) Up, down and up again is a signature global gene expression pattern at the beginning of gymnosperms embryogenesis. Gene Expr Patterns 3:83–91

    Google Scholar 

  73. Lo Schiavo F, Pitto L, Giuliano G et al (1989) DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet 77:325–331

    CAS  Google Scholar 

  74. Tchorbadjieva M, Pantchev I (2004) DNA methylation and somatic embryogenesis of orchardgrass (Dactylis glomerata L.). Bulg J Plant Physiol 30:3–13

    CAS  Google Scholar 

  75. Causevic A, Gentil MV, Delaunay A et al (2005) Relationship between DNA methylation and histone acetylation levels, cell redox and cell differentiation states in sugarbeet lines. Planta 224:812–827

    Google Scholar 

  76. Yamamoto N, Kobayashi H, Togashi T et al (2005) Formation of embryogenic cell clumps from carrot epidermal cells is suppressed by 5-azacytidine, a DNA methylation inhibitor. J Plant Physiol 162:47–54

    PubMed  CAS  Google Scholar 

  77. Santos D, Fevereiro P (2002) Loss of DNA methylation affects somatic embryogenesis in Medicago truncatula. Plant Cell Tissue Organ Cult 70:155–161

    CAS  Google Scholar 

  78. Chakrabarty D, Yu KW, Paek KY (2003) Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus). Plant Sci 165:61–68

    CAS  Google Scholar 

  79. Noceda C, Salaj T, Pérez M et al (2009) DNA demethylation and decrease on free polyamines is associated with the embryogenic capacity of Pinus nigra Arn. cell culture. Trees 23:1285–1293

    CAS  Google Scholar 

  80. Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50:1187–1195

    PubMed  CAS  Google Scholar 

  81. Gehring M, Henikoff S (2007) DNA methylation dynamics in plant genomes. Biochim Biophys Acta 1769:276–286

    PubMed  CAS  Google Scholar 

  82. Pennisi E (1996) Chemical shackles for genes? Science 273:574–575

    PubMed  CAS  Google Scholar 

  83. Fransz P, Jong J (2002) Chromatin dynamics in plants. Curr Opin Plant Biol 5:560–567

    PubMed  CAS  Google Scholar 

  84. Greenwood M (1995) Juvenility and maturation in conifers: current concepts. Tree Physiol 15:433–438

    PubMed  Google Scholar 

  85. Fraga MF, Cañal MJ, Rodríguez R (2002) Phase change related epigenetic and physiological changes in Pinus radiata D Don. Planta 215:672–676

    PubMed  CAS  Google Scholar 

  86. Fraga MF, Rodríguez R, Cañal MJ (2002) Genomic DNA methylation-demethylation during ageing-reinvigoration of Pinus radiata. Tree Physiol 22:813–816

    PubMed  CAS  Google Scholar 

  87. Hasbún R, Valledor L, Santamaría E et al (2007) Dynamics of DNA methylation in chestnut trees development. Acta Hort 750:563–566

    Google Scholar 

  88. Wilson VL, Smith RA, Longoria J et al (1987) Chemical carcinogen-induced decreases in genomic 5-methyldeoxycytidine content of normal bronchial epithelial cells. Proc Natl Acad Sci USA 84:3298–3301

    PubMed  CAS  Google Scholar 

  89. Richardson B (2003) Impact of aging on DNA methylation. Ageing Res Rev 2:241–265

    Google Scholar 

  90. Burn J, Bagnall D, Metzger J et al (1993) DNA methylation, vernalization, the initiation of flowering. Proc Natl Acad Sci USA 90:287–291

    PubMed  CAS  Google Scholar 

  91. Díaz-Sala C, Rey M, Boronat A et al (1995) Variations in the DNA methylation and polypeptide patterns of adult hazel (Corylus avellana L.) associated with sequential in vitro subcultures. Plant Cell Rep 15:218–221

    Google Scholar 

  92. Kakutani T (1997) Genetic characterization of late-flowering traits induced by DNA hypomethylation mutation in Arabidopsis thaliana. Plant J 12:1447–1451

    PubMed  CAS  Google Scholar 

  93. Lambé P, Mutambel H, Fouché J (1997) DNA methylation as a key process in regulation of organogenic totipotency and plant neoplastic progression? In Vitro Cell Dev Biol 33:155–162

    Google Scholar 

  94. Hasbún R, Valledor L, Rodríguez JL et al (2008) HPCE quantification of 5-methyl-2′-deoxycytidine in genomic DNA: methodological optimization for chestnut and other woody species. Plant Physiol Biochem 51:3692–3695

    Google Scholar 

  95. Messeguer R, Ganal MW, Steffens JC et al (1991) Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Mol Biol 16:753–770

    PubMed  CAS  Google Scholar 

  96. Burzynski SR (2005) Aging: gene silencing or gene activation? Med Hypotheses 64:201–208

    PubMed  CAS  Google Scholar 

  97. Christensen BC, Houseman EA, Marsit CJ et al (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5(8):e1000602. doi:10.1371/journal.pgen.1000602

    PubMed  Google Scholar 

  98. Bäurle I, Laux T (2003) Apical meristems: the plant’s fountain of youth. Bioessays 25:961–970

    PubMed  Google Scholar 

  99. Sha AH, Lin XH, Huang JB et al (2005) Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Mol Genet Genomics 273:484–490

    PubMed  CAS  Google Scholar 

  100. Zilberman D, Gehring M, Tran RK et al (2007) Genomewide analysis of Arabidopsis DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69

    PubMed  CAS  Google Scholar 

  101. Chuine I, Beaubien EG (2001) Phenology is a major determinant of tree species range. Ecol Lett 4:500–510

    Google Scholar 

  102. Arora R, Rowland LJ, Tanino K (2003) Induction and release of bud dormancy in woody perennials: a science comes of age. HortScience 38:911–921

    Google Scholar 

  103. Lang GA, Early JD, Martin GC et al (1987) Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22:371–377

    Google Scholar 

  104. Inamdar NM, Ehrlich KC, Ehrlich M (1991) CpG methylation inhibits binding of several sequence-specific DNA-binding proteins from pea, wheat, soybean and cauliflower. Plant Mol Biol 17:111–123

    PubMed  CAS  Google Scholar 

  105. Ehrlich M, Ehrlich KC (1993) Effect of DNA methylation on the binding of vertebrate and plant proteins to DNA. Curr Opin Genet Dev 3:226–231

    Google Scholar 

  106. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    PubMed  CAS  Google Scholar 

  107. Fuks F (2005) DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 15:490–495

    PubMed  CAS  Google Scholar 

  108. Dobosy JR, Selker EU (2001) Emerging connections between DNA methylation and histone acetylation. Cell Mol Life Sci 58:721–727

    PubMed  CAS  Google Scholar 

  109. Zhu J, Jeong JC, Zhu Y et al (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci USA 105:4945–4950

    PubMed  CAS  Google Scholar 

  110. Horvath DP, Foley ME, Chao WS et al (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540

    PubMed  CAS  Google Scholar 

  111. Druart N, Johansson A, Baba K et al (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J 50:557–573

    PubMed  CAS  Google Scholar 

  112. Mazzitelli L, Hancock RD, Haupt S et al (2007) Coordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58:1035–1045

    PubMed  CAS  Google Scholar 

  113. Ruttink T, Arend M, Morreel K et al (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19:2370–2390

    PubMed  CAS  Google Scholar 

  114. Law RD, Suttle JC (2004) Changes in histone H3 and H4 multi-acetylation during natural and forced dormancy break in potato tubers. Physiol Plant 120:642–649

    CAS  Google Scholar 

  115. Santamaría ME, Hasbún R, Valera MJ et al (2009) Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa. J Plant Physiol 166:1360–1390

    PubMed  Google Scholar 

  116. Santamaría ME, Rodríguez R, Cañal MJ et al (2011) Transcriptome analysis of chestnut (Castanea sativa Mill.) tree buds suggests a putative role for epigenetic control of bud dormancy. Ann Bot 180:485–498

    PubMed  Google Scholar 

  117. Cadman CS, Toorop PE, Hilhorst HW, Finch-Savage WE (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J 46:805–822

    PubMed  Google Scholar 

  118. Zhao XY, Su YH, Cheng ZJ et al (2008) Cell fate switch during in vitro plant organogenesis. J Integr Plant Biol 50:816–824

    PubMed  CAS  Google Scholar 

  119. Egli D, Birkhoff G, Eggan K (2008) Mediators of reprogramming: transcription factors and transitions through mitosis. Nat Rev Mol Cell Biol 9:505–516

    PubMed  CAS  Google Scholar 

  120. Hochedlinger K, Jaenisch R (2006) Nuclear reprogramming and pluripotency. Nature 441:1061–1067

    PubMed  CAS  Google Scholar 

  121. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    PubMed  CAS  Google Scholar 

  122. Zhang S, Lemaux P (2004) Molecular analysis of in vitro shoot organogenesis. Crit Rev Plant Sci 23:325–335

    CAS  Google Scholar 

  123. Sena G, Wang X, Liu HY et al (2009) Organ regeneration does not require a functional stem cell niche in plants. Nature 457:1150–1153

    PubMed  CAS  Google Scholar 

  124. Abarca D, Díaz-Sala C (2009) Reprogramming adult cells during organ regeneration in forest species. Plant Signal Behav 4:793–795

    PubMed  Google Scholar 

  125. Birnbaum KD, Alvarado AS (2008) Slicing across kingdoms: regeneration in plants and animals. Cell 132:697–710

    PubMed  CAS  Google Scholar 

  126. Bhalla P, Singh M (2006) Molecular control of stem cell maintenance in shoot apical meristem. Plant Cell Rep 25:249–256

    PubMed  CAS  Google Scholar 

  127. Christianson ML, Warnick DA (1985) Temporal requirement for phytohormone balance in the control of organogenesis in vitro. Dev Biol 112:494–497

    CAS  Google Scholar 

  128. Inoue T, Higuchi M, Hashimoto Y et al (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409: 1060–1063

    PubMed  CAS  Google Scholar 

  129. Fujimoto SY, Ohta M, Usui A et al (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    PubMed  CAS  Google Scholar 

  130. Aida M, Ishida T, Fukaki H et al (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    PubMed  CAS  Google Scholar 

  131. Aida M, Ishida T, Tasaka M (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126: 1563–1570

    PubMed  CAS  Google Scholar 

  132. Takada S, Hibara K, Ishida T et al (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Dev Biol 128:1127–1135

    CAS  Google Scholar 

  133. Prakash AP, Kumar PP (2002) PkMADS1 is a novel MADS box gene regulating adventitious shoot induction and vegetative shoot development in Paulownia kawakamii. Plant J 29:141–151

    PubMed  CAS  Google Scholar 

  134. Che P, Gingerich DJ, Lall S et al (2002) Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell 14:2771–2785

    PubMed  CAS  Google Scholar 

  135. Che P, Lall S, Nettleton D et al (2006) Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol 141:620–637

    PubMed  CAS  Google Scholar 

  136. Thakare D, Tang W, Hill K et al (2008) The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol 146:1663–1672

    PubMed  CAS  Google Scholar 

  137. Larkin PJ, Scowcroft WR (1981) Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Google Scholar 

  138. Bouman H, De Klerk GJ (1996) Somaclonal variation in biotechnology of ornamental plants. In: Geneve RL, Preece JE, Merkle A (eds) Biotechnology of ornamental plants. University of Kentucky, Lexington, KY

    Google Scholar 

  139. Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    PubMed  CAS  Google Scholar 

  140. Prado MJ, González MV, Romo S et al (2007) Adventitious plant regeneration on leaf explants from adult male kiwifruit and AFLP analysis of genetic variation. Plant Cell Tissue Organ Cult 88:1–10

    Google Scholar 

  141. Khan EU, Fu XZ, Wang J et al (2009) Regeneration and characterization of plants derived from leaf in vitro culture of two sweet orange (Citrus sinensis (L.) Osbeck) cultivars. Sci Hortic 120:70–76

    CAS  Google Scholar 

  142. Fiuk A, Bednarek PT, Rybczyński JJ (2010) Flow cytometry, HPLC-RP, and metAFLP analyses to assess genetic variability in somatic embryo-derived plantlets of Gentiana pannonica Scop. Plant Mol Biol Rep 28:413–420

    CAS  Google Scholar 

  143. Labra M, Vannini C, Grassi F et al (2004) Genomic stability in Arabidopsis thaliana transgenic plants obtained by floral dip. Theor Appl Genet 109:1512–1518

    PubMed  CAS  Google Scholar 

  144. Munthali MT, Newbury HJ, Ford-Lloyd BV (1996) The detection of somaclonal variants of beet using RAPD. Plant Cell Rep 15:474–478

    CAS  Google Scholar 

  145. Côte FX, Teisson C, Perrier X (2001) Somaclonal variation rate evolution in plant tissue culture: contribution to understanding through a statistical approach. In Vitro Cell Dev Biol Plant 37:539–542

    Google Scholar 

  146. Causevic A, Delaunay A, Ounnar S et al (2005) DNA methylating and demethylating treatments modify phenotype and cell wall differentiation state in sugarbeet cell lines. Plant Physiol Biochem 43:681–691

    PubMed  CAS  Google Scholar 

  147. Johannes F, Porcher E, Teixeira FK et al (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5(6):e1000530. doi:10.1371/journal.pgen.1000530

    PubMed  Google Scholar 

  148. Kvaalen H, Johnsen Ø (2007) Timing of bud set in Picea abies is regulated by a memory of temperature during zygotic and somatic embryogenesis. New Phytol 177:49–59

    PubMed  Google Scholar 

  149. Liu ZL, Han FP, Tan M et al (2004) Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions. Theor Appl Genet 109:200–209

    PubMed  CAS  Google Scholar 

  150. Grandbastien M (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci 3:181–187

    Google Scholar 

  151. Sung S, Amasino RM (2004) Vernalization and epigenetics: how plants remember winter. Curr Opin Plant Biol 7:4–10

    PubMed  CAS  Google Scholar 

  152. Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    PubMed  CAS  Google Scholar 

  153. Alwee SS, Van der Linden CG, Van der Schoot J et al (2006) Characterization of oil palm MADS box genes in relation to the mantled flower abnormality. Plant Cell Tissue Organ Cult 85:331–344

    Google Scholar 

  154. Morcillo F, Gagneur C, Adam H et al (2006) Somaclonal variation in micropropagated oil palm. Characterization of two novel genes with enhanced expression in epigenetically abnormal cell lines and in response to auxin. Tree Physiol 26:585–594

    PubMed  CAS  Google Scholar 

  155. Chable V, Rival A, Beulé T et al (2009) “Aberrant” plants in cauliflower: 2. Aneuploidy and global DNA methylation. Euphytica 170:275–287

    CAS  Google Scholar 

  156. Smulders MJM, de Klerk GJ (2010) Epigenetics in plant tissue culture. Plant Growth Regul 62:137–146

    Google Scholar 

Download references

Acknowledgments

Scientific progress in aging, phase change, reinvigoration, and markers for quality was made with financial support from EU Projects FAIR3-CT96-1445, INCO 10063, and MCT-AGL2000-2126, AGL 2004-00810/FOR, AGL2007-62907/FOR Spanish National Projects. The Spanish M.E.C.D. supported fellowships of all young researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Viejo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Viejo, M. et al. (2012). Epigenetics, the Role of DNA Methylation in Tree Development. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology, vol 877. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-818-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-818-4_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-817-7

  • Online ISBN: 978-1-61779-818-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics