Skip to main content

Human Salivary Gland Stem Cells: Isolation, Propagation, and Characterization

  • Protocol
  • First Online:
Somatic Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 879))

Abstract

Stem cells are of outstanding interest for a variety of applications in regenerative medicine. The identification and characterization of novel tissue sources in order to reduce donor site morbidity and to provide specific cells in clinically applicable numbers have led to the detection of stem cells in almost all adult tissues. Salivary glands are of specific interest to our lab, as these tissues are easily accessible for the head and neck surgeon with low donor site morbidity. On the other hand, they possess an endocrine and exocrine function and thus play a very specific role in the human body. Stem cell identity however can only be demonstrated using a combination of different methods in vitro, as there is not a single marker or feature allowing for definite identification of such cells. In this chapter, we provide a comprehensive summary of our experimental methods for the isolation and characterization of human salivary gland stem cells in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lombaert IM, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T et al (2008) Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One 3(4):e2063

    Article  PubMed  Google Scholar 

  2. Potten CS, Booth C, Hargreaves D (2003) The small intestine as a model for evaluating adult tissue stem cell drug targets. Cell Prolif 36(3):115–129

    Article  PubMed  CAS  Google Scholar 

  3. Potten CS, Booth C, Tudor GL, Booth D, Brady G, Hurley P et al (2003) Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation 71(1):28–41

    Article  PubMed  CAS  Google Scholar 

  4. Tatsuishi Y, Hirota M, Kishi T, Adachi M, Fukui T, Mitsudo K et al (2009) Human salivary gland stem/progenitor cells remain dormant even after irradiation. Int J Mol Med 24(3):361–366

    PubMed  CAS  Google Scholar 

  5. Hisatomi Y, Okumura K, Nakamura K, Matsumoto S, Satoh A, Nagano K et al (2004) Flow cytometric isolation of endodermal progenitors from mouse salivary gland differentiate into hepatic and pancreatic lineages. Hepatology 39(3):667–675

    Article  PubMed  Google Scholar 

  6. Rotter N, Oder J, Schlenke P, Lindner U, Bohrnsen F, Kramer J et al (2008) Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev 17(3):509–518

    Article  PubMed  CAS  Google Scholar 

  7. Tran SD, Wang J, Bandyopadhyay BC, Redman RS, Dutra A, Pak E et al (2005) Primary culture of polarized human salivary epithelial cells for use in developing an artificial salivary gland. Tissue Eng 11(1–2):172–181

    Article  PubMed  CAS  Google Scholar 

  8. Denny PC, Ball WD, Redman RS (1997) Salivary glands: a paradigm for diversity of gland development. Crit Rev Oral Biol Med 8(1):51–75

    Article  PubMed  CAS  Google Scholar 

  9. Gresik EW (1994) The granular convoluted tubule (GCT) cell of rodent submandibular glands. Microsc Res Tech 27(1):1–24

    Article  PubMed  CAS  Google Scholar 

  10. Kishi T, Takao T, Fujita K, Taniguchi H (2006) Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands. Biochem Biophys Res Commun 340(2):544–552

    Article  PubMed  CAS  Google Scholar 

  11. Kagami H, Wang S, Hai B (2008) Restoring the function of salivary glands. Oral Dis 14(1):15–24

    PubMed  CAS  Google Scholar 

  12. Rotter N, Schwarz S, Jakob M, Brandau S, Wollenberg B, Lang S (2010) [Salivary gland stem cells: can they restore radiation-induced salivary gland dysfunction?]. HNO 58(6):556–563

    Article  PubMed  CAS  Google Scholar 

  13. Grove JE, Bruscia E, Krause DS (2004) Plasticity of bone marrow-derived stem cells. Stem Cells 22(4):487–500

    Article  PubMed  Google Scholar 

  14. Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med (Maywood) 226(6):507–520

    CAS  Google Scholar 

  15. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  PubMed  CAS  Google Scholar 

  16. Gorjup E, Danner S, Rotter N, Habermann J, Brassat U, Brummendorf TH et al (2009) Glandular tissue from human pancreas and salivary gland yields similar stem cell populations. Eur J Cell Biol 88(7):409–421

    Article  PubMed  CAS  Google Scholar 

  17. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107(2):275–281

    Article  PubMed  CAS  Google Scholar 

  18. Mets T, Verdonk G (1981) In vitro aging of human bone marrow derived stromal cells. Mech Ageing Dev 16(1):81–89

    Article  PubMed  CAS  Google Scholar 

  19. Mets T, Verdonk G (1981) Variations in the stromal cell population of human bone marrow during aging. Mech Ageing Dev 15(1):41–49

    Article  PubMed  CAS  Google Scholar 

  20. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749

    Article  PubMed  CAS  Google Scholar 

  21. Hu E, Tontonoz P, Spiegelman BM (1995) Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc Natl Acad Sci U S A 92(21):9856–9860

    Article  PubMed  CAS  Google Scholar 

  22. Sekiya I, Larson BL, Vuoristo JT, Cui JG, Prockop DJ (2004) Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs). J Bone Miner Res 19(2):256–264

    Article  PubMed  CAS  Google Scholar 

  23. Sudo K, Kanno M, Miharada K, Ogawa S, Hiroyama T, Saijo K et al (2007) Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell populations. Stem Cells 25(7):1610–1617

    Article  PubMed  CAS  Google Scholar 

  24. Gregoire V, De Neve W, Eisbruch A, Lee N, Van den WD, Van Gestel D (2007) Intensity-modulated radiation therapy for head and neck carcinoma. Oncologist 12(5):555–564

    Article  PubMed  Google Scholar 

  25. Laplante M, Festuccia WT, Soucy G, Gelinas Y, Lalonde J, Berger JP et al (2006) Mechanisms of the depot specificity of peroxisome proliferator-activated receptor gamma action on adipose tissue metabolism. Diabetes 55(10):2771–2778

    Article  PubMed  CAS  Google Scholar 

  26. Rosen ED, Spiegelman BM (2000) Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16:145–171

    Article  PubMed  CAS  Google Scholar 

  27. Fukumura D, Ushiyama A, Duda DG, Xu L, Tam J, Krishna V et al (2003) Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res 93(9):e88–e97

    Article  PubMed  CAS  Google Scholar 

  28. Ogbureke KU, Fisher LW (2007) SIBLING expression patterns in duct epithelia reflect the degree of metabolic activity. J Histochem Cytochem 55(4):403–409

    Article  PubMed  CAS  Google Scholar 

  29. Frank O, Heim M, Jakob M, Barbero A, Schafer D, Bendik I et al (2002) Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J Cell Biochem 85(4):737–746

    Article  PubMed  CAS  Google Scholar 

  30. Chen J, Thomas HF, Sodek J (1996) Regulation of bone sialoprotein and osteopontin mRNA expression by dexamethasone and 1,25-dihydroxyvitamin D3 in rat bone organ cultures. Connect Tissue Res 34(1):41–51

    Article  PubMed  CAS  Google Scholar 

  31. Sodek J, Chen J, Nagata T, Kasugai S, Todescan R Jr, Li IW et al (1995) Regulation of osteopontin expression in osteoblasts. Ann N Y Acad Sci 760:223–241

    Article  PubMed  CAS  Google Scholar 

  32. Giachelli CM, Steitz S (2000) Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol 19(7):615–622

    Article  PubMed  CAS  Google Scholar 

  33. Brown LF, Berse B, van de WL, Papadopoulos-Sergiou A, Perruzzi CA, Manseau EJ et al (1992) Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces. Mol Biol Cell 3(10):1169–1180

    PubMed  CAS  Google Scholar 

  34. Kusafuka K, Yamaguchi A, Kayano T, Takemura T (1999) Expression of bone matrix proteins, osteonectin and osteopontin, in salivary pleomorphic adenomas. Pathol Res Pract 195(11):733–739

    Article  PubMed  CAS  Google Scholar 

  35. Asaka M, Ohta K, Muramatsu T, Kurokawa M, Kizaki H, Hashimoto S et al (2006) The expression and localization of osteopontin in the mouse major salivary glands. Arch Histol Cytol 69(3):181–188

    Article  PubMed  CAS  Google Scholar 

  36. Yamada K (1973) The effect of digestion with Streptomyces hyaluronidase upon certain histochemical reactions of hyaluronic acid-containing tissues. J Histochem Cytochem 21(9):794–803

    Article  PubMed  CAS  Google Scholar 

  37. Joraku A, Sullivan CA, Yoo J, Atala A (2007) In-vitro reconstitution of three-dimensional human salivary gland tissue structures. Differentiation 75(4):318–324

    Article  PubMed  CAS  Google Scholar 

  38. Castro-Malaspina H, Gay RE, Resnick G, Kapoor N, Meyers P, Chiarieri D et al (1980) Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 56(2):289–301

    PubMed  CAS  Google Scholar 

  39. Castro-Malaspina H, Ebell W, Wang S (1984) Human bone marrow fibroblast colony-forming units (CFU-F). Prog Clin Biol Res 154:209–236

    PubMed  CAS  Google Scholar 

  40. Battula VL, Bareiss PM, Treml S, Conrad S, Albert I, Hojak S et al (2007) Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation 75(4):279–291

    Article  PubMed  CAS  Google Scholar 

  41. Buhring HJ, Battula VL, Treml S, Schewe B, Kanz L, Vogel W (2007) Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci 1106:262–271

    Article  PubMed  Google Scholar 

  42. Tocci A, Forte L (2003) Mesenchymal stem cell: use and perspectives. Hematol J 4(2):92–96

    Article  PubMed  Google Scholar 

  43. Tuli R, Tuli S, Nandi S, Wang ML, Alexander PG, Haleem-Smith H et al (2003) Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone. Stem Cells 21(6):681–693

    Article  PubMed  CAS  Google Scholar 

  44. Krause DS, Fackler MJ, Civin CI, May WS (1996) CD34: structure, biology, and clinical utility. Blood 87(1):1–13

    PubMed  CAS  Google Scholar 

  45. Simmons PJ, Torok-Storb B (1991) CD34 expression by stromal precursors in normal human adult bone marrow. Blood 78(11):2848–2853

    PubMed  CAS  Google Scholar 

  46. Soncini M, Vertua E, Gibelli L, Zorzi F, Denegri M, Albertini A et al (2007) Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 1(4):296–305

    Article  PubMed  CAS  Google Scholar 

  47. Tondreau T, Lagneaux L, Dejeneffe M, Delforge A, Massy M, Mortier C et al (2004) Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: phenotype, proliferation kinetics and differentiation potential. Cytotherapy 6(4):372–379

    Article  PubMed  CAS  Google Scholar 

  48. Tondreau T, Lagneaux L, Dejeneffe M, Massy M, Mortier C, Delforge A et al (2004) Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation 72(7):319–326

    Article  PubMed  CAS  Google Scholar 

  49. Boiret N, Rapatel C, Veyrat-Masson R, Guillouard L, Guerin JJ, Pigeon P et al (2005) Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow. Exp Hematol 33(2):219–225

    Article  PubMed  CAS  Google Scholar 

  50. Lee RH, Seo MJ, Pulin AA, Gregory CA, Ylostalo J, Prockop DJ (2009) The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood 113(4):816–826

    Article  PubMed  CAS  Google Scholar 

  51. Chen MS, Almeida EA, Huovila AP, Takahashi Y, Shaw LM, Mercurio AM et al (1999) Evidence that distinct states of the integrin alpha6beta1 interact with laminin and an ADAM. J Cell Biol 144(3):549–561

    Article  PubMed  CAS  Google Scholar 

  52. Shaw LM, Mercurio AM (1995) Regulation of alpha 6 beta 1 integrin-mediated migration in macrophages. Agents Actions Suppl 47:101–106

    PubMed  CAS  Google Scholar 

  53. Zhu H, Mitsuhashi N, Klein A, Barsky LW, Weinberg K, Barr ML et al (2006) The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells 24(4):928–935

    Article  PubMed  CAS  Google Scholar 

  54. Majumdar MK, Keane-Moore M, Buyaner D, Hardy WB, Moorman MA, McIntosh KR et al (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 10(2):228–241

    Article  PubMed  CAS  Google Scholar 

  55. Lisignoli G, Cristino S, Piacentini A, Cavallo C, Caplan AI, Facchini A (2006) Hyaluronan-based polymer scaffold modulates the expression of inflammatory and degradative factors in mesenchymal stem cells: Involvement of Cd44 and Cd54. J Cell Physiol 207(2):364–373

    Article  PubMed  CAS  Google Scholar 

  56. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E et al (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101(9):3722–3729

    Article  PubMed  CAS  Google Scholar 

  57. Covas DT, Siufi JL, Silva AR, Orellana MD (2003) Isolation and culture of umbilical vein mesenchymal stem cells. Braz J Med Biol Res 36(9):1179–1183

    Article  PubMed  CAS  Google Scholar 

  58. Battula VL, Treml S, Bareiss PM, Gieseke F, Roelofs H, de Zwart P et al (2009) Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica 94(2):173–184

    Article  PubMed  CAS  Google Scholar 

  59. Matsumoto S, Okumura K, Ogata A, Hisatomi Y, Sato A, Hattori K et al (2007) Isolation of tissue progenitor cells from duct-ligated salivary glands of swine. Cloning Stem Cells 9(2):176–190

    Article  PubMed  CAS  Google Scholar 

  60. Sato A, Okumura K, Matsumoto S, Hattori K, Hattori S, Shinohara M et al (2007) Isolation, tissue localization, and cellular characterization of progenitors derived from adult human salivary glands. Cloning Stem Cells 9(2):191–205

    Article  PubMed  CAS  Google Scholar 

  61. Fonsatti E, Maio M (2004) Highlights on endoglin (CD105): from basic findings towards clinical applications in human cancer. J Transl Med 2(1):18

    Article  PubMed  Google Scholar 

  62. Mareschi K, Novara M, Rustichelli D, Ferrero I, Guido D, Carbone E et al (2006) Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types. Exp Hematol 34(11):1563–1572

    Article  PubMed  CAS  Google Scholar 

  63. Mareschi K, Ferrero I, Rustichelli D, Aschero S, Gammaitoni L, Aglietta M et al (2006) Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem 97(4):744–754

    Article  PubMed  CAS  Google Scholar 

  64. Muller I, Kordowich S, Holzwarth C, Spano C, Isensee G, Staiber A et al (2006) Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy 8(5):437–444

    Article  PubMed  CAS  Google Scholar 

  65. Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200(2):123–135

    Article  PubMed  Google Scholar 

  66. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    Article  PubMed  CAS  Google Scholar 

  67. von Luttichau I, Notohamiprodjo M, Wechselberger A, Peters C, Henger A, Seliger C et al (2005) Human adult. Stem Cells Dev 14(3):329–336

    Article  Google Scholar 

  68. Maffini MV, Soto AM, Sonnenschein C, Papadopoulos N, Theoharides TC (2008) Lack of c-kit receptor promotes mammary tumors in N-nitrosomethylurea-treated Ws/Ws rats. Cancer Cell Int 8:5

    Article  PubMed  Google Scholar 

  69. Tallini YN, Greene KS, Craven M, Spealman A, Breitbach M, Smith J et al (2009) c-Kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci U S A 106(6):1808–1813

    Article  PubMed  CAS  Google Scholar 

  70. Vogel W, Grunebach F, Messam CA, Kanz L, Brugger W, Buhring HJ (2003) Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells. Haematologica 88(2):126–133

    PubMed  Google Scholar 

  71. Battula VL, Treml S, Abele H, Buhring HJ (2008) Prospective isolation and characterization of mesenchymal stem cells from human placenta using a frizzled-9-specific monoclonal antibody. Differentiation 76(4):326–336

    Article  PubMed  CAS  Google Scholar 

  72. Vitagliano L, Berisio R, Mazzarella L, Zagari A (2001) Structural bases of collagen stabilization induced by proline hydroxylation. Biopolymers 58(5):459–464

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank M. Jerg and K. Urlbauer for the excellent technical assistance. This work was supported by a grant from the German-Israeli Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Rotter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schwarz, S., Rotter, N. (2012). Human Salivary Gland Stem Cells: Isolation, Propagation, and Characterization. In: Singh, S. (eds) Somatic Stem Cells. Methods in Molecular Biology, vol 879. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-815-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-815-3_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-814-6

  • Online ISBN: 978-1-61779-815-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics