Skip to main content

Quantitative Measurement of Phosphopeptides and Proteins via Stable Isotope Labeling in Arabidopsis and Functional Phosphoproteomic Strategies

  • Protocol
  • First Online:
Plant Signalling Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 876))

Abstract

Protein phosphorylation is one type of posttranslational modification, which regulates a large number of cellular processes in plant cells. As an emerging powerful biotechnology that integrates all aspects of advantages from mass spectrometry, bioinformatics, and genomics, phosphoproteomics offers us an unprecedented high-throughput methodology with high sensitivity and dashing speed in identifying a large complement of phosphoproteins from plant cells within a relatively short period of time. Needless to say, phosphoproteomics has become an integral portion of life sciences, which penetrates various research disciplines of biology, agriculture, and forestry and irreversibly changes the way by which plant scientists study biological problems.Because phosphorylation/dephosphorylation of protein is dynamic in cells and the amount of phosphoproteins is low, the preservation of a phosphor group onto phosphosite throughout protein purification as well as enrichment of these phosphoproteins during purification has become a serious technical issue. To overcome difficulties commonly associated with phosphoprotein isolation, phosphopeptides’ enrichment, and mass spectrometry analysis, we have developed a urea-based phosphoprotein purification protocol for plants, which instantly denatures plant proteins once the total cell content comes into contact with the UEB solution. To measure the alteration of phosphorylation on a phosphosite using mass spectrometer, an in vivo 15N metabolic labeling method (SILIA, i.e., stable isotope labeling in Arabidopsis) has been developed and applied for Arabidopsis differential phosphoproteomics. Thus far, hundreds of signaling-specific phosphoproteins have been identified using both label-free and 15N-labeled differential phosphoproteomic approach. The phosphoproteomics has allowed us to identify a number of signaling components mediating plant cell signaling in Arabidopsis. It is envisaged that a huge number of phosphosites will continue to be uncovered from phosphoproteomics in the near future, which will become instrumental for the development of plant phosphor-relay networks and molecular systems biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krebs EG (1983) Historical perspectives on protein phosphorylation and a classification system for protein kinases. Philos Trans R Soc Lond B Biol Sci 302:3–11

    Article  PubMed  CAS  Google Scholar 

  2. Mason MG, Schaller GE (2005) Histidine kinase activity and regualtion of ethylene sginal trasnduction. Can J Bot 83:563–570

    Article  CAS  Google Scholar 

  3. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20:301–305

    Article  PubMed  CAS  Google Scholar 

  4. Nühse TS, Stensballe A, Jensen ON, Peck SC (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2:1234–1243

    Article  PubMed  Google Scholar 

  5. Nühse TS, Stensballe A, Jensen ON, Peck SC (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16:2394–2405

    Article  PubMed  Google Scholar 

  6. Van Bentem S, Anrather D, Roitinger E, Djamei A et al (2006) Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNA metabolism. Nucleic Acids Res 34:3267–3278

    Article  Google Scholar 

  7. Chitteti BR, Peng Z (2007) Proteome and phosphoproteome dynamic change during cell dedifferentiation in Arabidopsis. Proteomics 7:1473–1500

    Article  PubMed  CAS  Google Scholar 

  8. Li X, Gerber SA, Rudner AD, Beausoleil SA et al (2007) Large-scale phosphorylation analysis of α-factor-arrested Saccharomyces cerevisiae. J Proteome Res 6:1190–1197

    Article  PubMed  CAS  Google Scholar 

  9. Ono M, Shitashige M et al (2006) Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry. Mol Cell Proteomics 5:1338

    Article  PubMed  CAS  Google Scholar 

  10. Tabata T, Sato T et al (2007) Pseudo internal standard approach for label-free quantitative proteomics. Anal Chem 79:8440–8445

    Article  PubMed  CAS  Google Scholar 

  11. Li H, Wong WS, Zhu L, Guo HW, Ecker J, Ning LI (2009) Phosphoproteomics analysis of ethylene-regulated protein phosphorylation in etiolated seedlings of Arabidopsis mutant ein2 using 2-D-separations coupled with a hybrid Q-TOF mass spectrometry. Proteomics 9:1646–1661

    Article  PubMed  CAS  Google Scholar 

  12. Gygil S, Rist B, Gerber S, Turecek F, Gelb M, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  Google Scholar 

  13. Yao X, Freas A et al (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73:2836–2842

    Article  PubMed  CAS  Google Scholar 

  14. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  PubMed  CAS  Google Scholar 

  15. Goshe M, Smith R (2003) Stable isotope-coded proteomic mass spectrometry. Curr Opin Biotechnol 14:101–109

    Article  PubMed  CAS  Google Scholar 

  16. Whitelegge J, Katz J et al (2004) Subtle modification of isotope ratio proteomics; an integrated strategy for expression proteomics. Phytochemistry 65:1507–1515

    Article  PubMed  CAS  Google Scholar 

  17. Ross P, Huang Y et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154

    Article  PubMed  CAS  Google Scholar 

  18. Huttlin E, Hegeman A et al (2007) Comparison of full versus partial metabolic labeling for quantitative proteomics analysis in Arabidopsis thaliana. Mol Cell Proteomics 6:860

    Article  PubMed  CAS  Google Scholar 

  19. Liu H, Zhang Y et al (2007) Non-gel-based dual 18O labeling quantitative proteomics strategy. Anal Chem 79:7700–7707

    Article  PubMed  CAS  Google Scholar 

  20. Dunkley T, Watson R et al (2004) Localization of organelle proteins by isotope tagging (LOPIT). Mol Cell Proteomics 3:1128

    Article  PubMed  CAS  Google Scholar 

  21. Jones A, Bennett M et al (2006) Analysis of the defence phosphoproteome of Arabidopsis thaliana using differential mass tagging. Proteomics 6:4155–4165

    Article  PubMed  CAS  Google Scholar 

  22. Rudella A, Friso G, Alonso JM, Ecker JR, van Wijk KJ (2006) Downregulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in Arabidopsis. Plant Cell 18:1704–1721

    Article  PubMed  CAS  Google Scholar 

  23. Schaff JE, Mbeunkui F, Blackburn K, Bird DM, Goshe MB (2008) SILIP: a novel stable isotope labeling method for in planta quantitative proteomic analysis. Plant J 56:840–854

    Article  PubMed  CAS  Google Scholar 

  24. Ong S, Kratchmarova I, Mann M (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2:173–181

    Article  PubMed  CAS  Google Scholar 

  25. Everley P, Krijgsveld J et al (2004) Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol Cell Proteomics 3:729

    Article  PubMed  CAS  Google Scholar 

  26. Gehrmann M, Hathout Y et al (2004) Evaluation of metabolic labeling for comparative proteomics in breast cancer cells. J Proteome Res 3:1063–1068

    Article  PubMed  CAS  Google Scholar 

  27. Rios-Estepa R, Lange B (2007) Experimental and mathematical approaches to modeling plant metabolic networks. Phytochemistry 68:2351–2374

    Article  PubMed  CAS  Google Scholar 

  28. Beynon R, Pratt J (2005) Metabolic labeling of proteins for proteomics. Mol Cell Proteomics 4:857

    Article  PubMed  CAS  Google Scholar 

  29. Engelsberger W, Erban A, Kopka J, Schulze W (2006) Metabolic labeling of plant cell cultures with K15 NO3 as a tool for quantitative analysis of proteins and metabolites. Plant Methods 2:14

    Article  PubMed  Google Scholar 

  30. Washburn M, Ulaszek R et al (2002) Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal Chem 74:1650–1657

    Article  PubMed  CAS  Google Scholar 

  31. Krijgsveld J, Ketting R et al (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21:927–931

    Article  PubMed  CAS  Google Scholar 

  32. Wu J, Kobayashi M et al (2005) Differential proteomic analysis of bronchoalveolar lavage fluid in asthmatics following segmental antigen challenge. Mol Cell Proteomics 4:1251

    Article  PubMed  CAS  Google Scholar 

  33. Nelson C, Huttlin E et al (2007) Implications of 15N-metabolic labeling for automated peptide identification in Arabidopsis thaliana. Proteomics 7:1279–1292

    Article  PubMed  CAS  Google Scholar 

  34. Hebeler R, Oeljeklaus S et al (2008) Study of early leaf senescence in Arabidopsis thaliana by quantitative proteomics using reciprocal 14N/15N labeling and difference gel electrophoresis. Mol Cell Proteomics 7:108

    PubMed  CAS  Google Scholar 

  35. Kolkman A, Olsthoorn M et al (2005) Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol. Mol Cell Proteomics 4:1

    PubMed  CAS  Google Scholar 

  36. Zybailov B, Coleman M et al (2005) Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. Anal Chem 77:6218–6224

    Article  PubMed  CAS  Google Scholar 

  37. Snijders A, de Vos M et al (2005) Novel approach for peptide quantitation and sequencing based on 15N and 13C metabolic labeling. J Proteome Res 4:578–585

    Article  PubMed  CAS  Google Scholar 

  38. Guo GY, Li N (2011) Relative and Accurate Measurement of Protein Abundance in (15)N Stable Isotope Labeling in Arabidopsis (SILIA). Phytochemistry. 72: 1028–1039

    Google Scholar 

Download references

Acknowledgments

Thanks Mr. Zhu, Lin and Mr. Guo, and Guang Yu for contributing and editing the text of the protocol. This work is supported by research grants CAS10SC01, 66148, 661207, RPC07/08.SC16, SBI08/09.SC08, GMGS08/09.SC04, and N_HKUST627/06 awarded to Ning Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Li, N. (2011). Quantitative Measurement of Phosphopeptides and Proteins via Stable Isotope Labeling in Arabidopsis and Functional Phosphoproteomic Strategies. In: Wang, ZY., Yang, Z. (eds) Plant Signalling Networks. Methods in Molecular Biology, vol 876. Humana Press. https://doi.org/10.1007/978-1-61779-809-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-809-2_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-808-5

  • Online ISBN: 978-1-61779-809-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics