Skip to main content

Cryoradiolysis and Cryospectroscopy for Studies of Heme-Oxygen Intermediates in Cytochromes P450

  • Protocol
  • First Online:
Book cover Spectroscopic Methods of Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 875))

Abstract

Cryogenic radiolytic reduction is one of the most straightforward and convenient methods of generation and stabilization of reactive iron–oxygen intermediates for mechanistic studies in chemistry and biochemistry. The method is based on one-electron reduction of the precursor complex in frozen solution via exposure to the ionizing radiation at cryogenic temperatures. Such approach allows for accumulation of the fleeting reactive complexes which otherwise could not be generated at sufficient amount for structural and mechanistic studies. Application of this method allowed for characterizing of peroxo-ferric and hydroperoxo-ferric intermediates, which are common for the oxygen activation mechanism in cytochromes P450, heme oxygenases, and nitric oxide synthases, as well as for the peroxide metabolism by peroxidases and catalases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharonov YA (1986) The heme electronic structure of reduced cytochromes P 450 and P 420 as studied by low-temperature magnetic circular dichroism. Mol Biol (Moscow) 20:440–450

    CAS  Google Scholar 

  2. Solomon EI, Hanson MA (1999) Bioinorganic spectroscopy. In: Solomon EI, Lever ABP (eds) Inorganic electronic structure and spectroscopy, vol 2. Wiley, New York, pp 1–129

    Google Scholar 

  3. Keilin D, Hartree EF (1949) Effect of low temperature on the absorption spectra of hemoproteins, with observations on the absorption spectrum of oxygen. Nature 164:254–259

    Article  CAS  PubMed  Google Scholar 

  4. Strickland EH (1974) Aromatic contributions to circular dichroism spectra of proteins. CRC Crit Rev Biochem 2:113–175

    Article  CAS  PubMed  Google Scholar 

  5. Strickland EH, Horwitz J, Billups C (1969) Fine structure in the near-ultraviolet circular dichroism and absorption spectra of tryptophan derivatives and chymotrypsinogen A at 77 K. Biochemistry 8:3205–3213

    Article  CAS  PubMed  Google Scholar 

  6. Sharonov YA (1992) Substrate induced electronic-conformational interactions in active site of reduced bacterial cytochrome P 450CAM and analysis of the heme electronic structure. Mol Biol (Moscow) 26:1251–1262

    CAS  Google Scholar 

  7. Sharonov YA (2001) The energy level scheme for the ferryl heme in compound II of the peroxidase-catalase family as determined from analysis of low-temperature magnetic circular dichroism. Biochim Biophys Acta 1504:444–451

    Article  CAS  PubMed  Google Scholar 

  8. Solomon EI, Pavel EG, Loeb KE, Campochiaro C (1995) Magnetic circular dichroism spectroscopy as a probe of the geometric and electronic structure of non-heme ferrous enzymes. Coord Chem Rev 144:369–460

    Article  CAS  Google Scholar 

  9. Honig B, Ebrey TG (1974) The structure and spectra of the chromophore of the visual pigments. Annu Rev Biophys Bioeng 3:151–177

    Article  CAS  PubMed  Google Scholar 

  10. Balashov SP, Ebrey TG (2001) Trapping and spectroscopic identification of the photointermediates of bacteriorhodopsin at low temperatures. Photochem Photobiol 73:453–462

    Article  CAS  PubMed  Google Scholar 

  11. Ponkratov VV, Friedrich J, Vanderkooi JM, Burin AL, Berlin YA (2004) Physics of proteins at low temperature. J Low Temp Phys 137:289–317

    Article  CAS  Google Scholar 

  12. Frauenfelder H, Alberding NA, Ansari A, Braunstein D, Cowen BR, Hong MK, Iben IET, Johnson JB, Luck S et al (1990) Proteins and pressure. J Phys Chem 94:1024–1037

    Article  CAS  Google Scholar 

  13. Miller LM, Chance MR (1995) Structural and electronic factors that influence oxygen affinities: A spectroscopic comparison of ferrous and cobaltous oxymyoglobin. Biochemistry 34:10170–10179

    Article  CAS  PubMed  Google Scholar 

  14. Nienhaus K, Lamb DC, Deng P, Nienhaus GU (2002) The effect of ligand dynamics on heme electronic transition band III in myoglobin. Biophys J 82:1059–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tetreau C, Mouawad L, Murail S, Duchambon P, Blouquit Y, Lavalette D (2005) Disentangling ligand migration and heme pocket relaxation in cytochrome P450cam. Biophys J 88:1250–1263

    Article  CAS  PubMed  Google Scholar 

  16. Cupane A, Leone M, Vitrano E, Cordone L (1995) Low temperature optical absorption spectroscopy: an approach to the study of stereodynamic properties of hemeproteins. Eur Biophys J 23:385–398

    Article  CAS  PubMed  Google Scholar 

  17. Unno M, Chen H, Kusama S, Shaik S, Ikeda-Saito M (2007) Structural characterization of the fleeting ferric peroxo species in myoglobin: Experiment and theory. J Am Chem Soc 129:13394–13395

    Article  CAS  PubMed  Google Scholar 

  18. Beitlich T, Kuehnel K, Schulze-Briese C, Shoeman RL, Schlichting I (2007) Cryoradiolytic reduction of crystalline heme proteins: analysis by UV-vis spectroscopy and X-ray crystallography. J Synchrotron Radiat 14:11–23

    Article  CAS  PubMed  Google Scholar 

  19. Meyer B (1971) Low temperature spectroscopy. American Elsevier Publishing Co., New York, 653 pp

    Google Scholar 

  20. Douzou P (1977) Cryobiochemistry: an introduction. Academic, London, 286 pp

    Google Scholar 

  21. Sergeev GB, Batyuk VA (1981) Cryochemistry. Mir Publishers, Moscow, 298 pp

    Google Scholar 

  22. Franks F (1985) Biophysics and biochemistry at low temperatures. Cambridge University Press, Cambridge, 210 pp

    Google Scholar 

  23. Auld DS (1993) Low-temperature stopped-flow rapid-scanning spectroscopy: performance tests and use of aqueous salt cryosolvents. Meth Enzymol 226:553–565

    Article  CAS  PubMed  Google Scholar 

  24. Douzou P (1980) Cryoenzymology in aqueous media. Adv Enzymol Relat Areas Mol Biol 51:1–74

    CAS  PubMed  Google Scholar 

  25. Douzou P, Balny C (1977) Cryoenzymology in mixed solvents without cosolvent effects on enzyme specific activity. Proc Natl Acad Sci U S A 74:2297–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Douzou P, Petsko GA (1984) Proteins at work: “stop-action” pictures at subzero temperatures. Adv Protein Chem 36:245–361

    Article  CAS  PubMed  Google Scholar 

  27. Daniel RM, Dunn RV, Finney JL, Smith JC (2003) The role of dynamics in enzyme activity. Annu Rev Biophys Biomol Struct 32:69–92

    Article  CAS  PubMed  Google Scholar 

  28. Bragger JM, Dunn RV, Daniel RM (2000) Enzyme activity down to −100 degrees C. Biochim Biophys Acta 1480:278–282

    Article  CAS  PubMed  Google Scholar 

  29. Douzou P, Hui Bon Hoa G, Maurel P, Travers F (1976) Physical chemical data for mixed solvents used in low temperature biochemistry. In: Fasman GD (ed) Physical and chemical data, vol 1, CRC handbook of biochemistry and molecular biology. CRC, Cleveland, pp 520–539

    Google Scholar 

  30. Wright WW, Guffanti GT, Vanderkooi JM (2003) Protein in sugar films and in glycerol/water as examined by infrared spectroscopy and by the fluorescence and phosphorescence of tryptophan. Biophys J 85:1980–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nienhaus K, Nienhaus GU (2008) Ligand dynamics in heme proteins observed by Fourier transform infrared spectroscopy at cryogenic temperatures. Meth Enzymol 437:347–378

    Article  CAS  PubMed  Google Scholar 

  32. Fink AL, Cartwright SJ (1981) Cryoenzymology. CRC Crit Rev Biochem 11:145–207

    Article  CAS  PubMed  Google Scholar 

  33. Reat V, Finney JL, Steer A, Roberts MA, Smith J, Dunn R, Peterson M, Daniel R (2000) Cryosolvents useful for protein and enzyme studies below −100 degrees C. J Biochem Biophys Meth 42:97–103

    Article  CAS  PubMed  Google Scholar 

  34. Dashnau JL, Nucci NV, Sharp KA, Vanderkooi JM (2006) Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures. J Phys Chem B 110:13670–13677

    Article  CAS  PubMed  Google Scholar 

  35. Douzou P (1973) Enzymology at sub-zero temperatures. Mol Cell Biochem 1:15–27

    Article  CAS  PubMed  Google Scholar 

  36. Douzou P (1977) Enzymology at subzero temperatures. Adv Enzymol Relat Areas Mol Biol 45:157–272

    CAS  PubMed  Google Scholar 

  37. Cox RP (1978) Cryoenzymology: the use of fluid solvent mixtures at subzero temperatures for the study of biochemical reactions. Biochem Soc Trans 6:689–697

    Article  CAS  PubMed  Google Scholar 

  38. Fink AL (1986) Protein folding in cryosolvents and at subzero temperatures. Methods Enzymol 131:173–185

    Article  CAS  PubMed  Google Scholar 

  39. Privalov PL (1990) Cold denaturation of proteins. CRC Crit Rev Biochem Mol Biol 25:281–305

    Article  CAS  Google Scholar 

  40. Prabhu NV, Sharp KA (2005) Heat capacity in proteins. Annu Rev Phys Chem 56:521–548

    Article  CAS  PubMed  Google Scholar 

  41. Larroque C, Maurel P, Balny C, Douzou P (1976) Practical potentiometric determinations of proton activity in hydro organic solvents at subzero temperatures. Anal Biochem 73:9–19

    Article  CAS  PubMed  Google Scholar 

  42. Orii Y, Morita M (1977) Measurement of the pH of frozen buffer solutions by using pH indicators. J Biochem Biophys Meth 81:163–168

    CAS  Google Scholar 

  43. Williams-Smith DL, Bray RC, Barber MJ, Tsopanakis AD, Vincent SP (1977) Changes in apparent pH on freezing aqueous buffer solutions and their relevance to biochemical electron-paramagnetic-resonance spectroscopy. Biochem J 167:593–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heger D, Klanova J, Klan P (2006) Enhanced protonation of cresol red in acidic aqueous solutions caused by freezing. J Phys Chem B 110:1277–1287

    Article  CAS  PubMed  Google Scholar 

  45. Schulze H, Ristau O, Jung C (1994) The proton activity at cryogenic temperatures–a possible influence on the spin state of the heme iron of cytochrome P-450cam in supercooled buffered solutions. Biochim Biophys Acta 1183:491–498

    Article  CAS  PubMed  Google Scholar 

  46. Sieracki NA, Hwang HJ, Lee MK, Garner DK, Lu Y (2008) A temperature independent pH (TIP) buffer for biomedical biophysical applications at low temperatures. Chem Commun: 823–825

    Google Scholar 

  47. Laidler KJ (1996) A glossary of terms used in chemical kinetics, including reaction dynamics. Pure Appl Chem 68:149–192

    Article  CAS  Google Scholar 

  48. Denisov IG, Grinkova YV, Baas BJ, Sligar SG (2006) The ferrous-dioxygen intermediate in human cytochrome P450 3A4: Substrate dependence of formation and decay kinetics. J Biol Chem 281:23313–23318

    Article  CAS  PubMed  Google Scholar 

  49. Lefevre-Groboillot D, Boucher JL, Mansuy D, Stuehr DJ (2006) Reactivity of the heme-dioxygen complex of the inducible nitric oxide synthase in the presence of alternative substrates. FEBS J 273:180–191

    Article  CAS  PubMed  Google Scholar 

  50. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287:1615–1622

    Article  CAS  PubMed  Google Scholar 

  51. Grinkova YV, Denisov IG, Waterman MR, Arase M, Kagawa N, Sligar SG (2008) The ferrous-oxy complex of human aromatase. Biochem Biophys Res Commun 372:379–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Van Leeuwen JW, Butler J, Swallow AJ (1981) A non-equilibrium state of deoxyhaemoglobin. Temperature-dependence and oxygen binding. Biochim Biophys Acta 667:185–196

    Article  PubMed  Google Scholar 

  53. Sato F, Shiro Y, Sakaguchi Y, Iizuka T, Hayashi H (1990) Thermodynamic study of protein dynamic structure in the oxygen binding reaction of myoglobin. J Biol Chem 265:18823–18828

    CAS  PubMed  Google Scholar 

  54. Filiaci M, Nienhaus GU (1997) The role of entropy in the discrimination between CO and O2 in myoglobin. Eur Biophys J 26:209–214

    Article  CAS  PubMed  Google Scholar 

  55. Tetreau C, Di Primo C, Lange R, Tourbez H, Lavalette D (1997) Dynamics of carbon monoxide binding with cytochromes P-450. Biochemistry 36:10262–10275

    Article  CAS  PubMed  Google Scholar 

  56. Barman T, Travers F, Balny C, Hui Bon Hoa G, Douzou P (1986) New trends in cryoenzymology: probing the functional role of protein dynamics by single-step kinetics. Biochimie 68:1041–1051

    Article  CAS  PubMed  Google Scholar 

  57. Denisov IG, Hung S-C, Weiss KE, Mclean MA, Shiro Y, Park S-Y, Champion PM, Sligar SG (2001) Characterization of the oxygenated intermediate of the thermophilic cytochrome P450 CYP119. J Inorg Biochem 87:215–226

    Article  CAS  PubMed  Google Scholar 

  58. Denisov IG, Ikeda-Saito M, Yoshida T, Sligar SG (2002) Cryogenic absorption spectra of hydroperoxo-ferric heme oxygenase, the active intermediate of enzymatic heme oxygenation. FEBS Lett 532:203–206

    Article  CAS  PubMed  Google Scholar 

  59. Denisov IG, Makris TM, Sligar SG (2002) Cryoradiolysis for the study of P450 reaction intermediates. Meth Enzymol 357:103–115

    Article  CAS  PubMed  Google Scholar 

  60. Spinks JWT, Woods RJ (1990) An introduction to radiation chemistry, 3rd edn. Wiley, New York, 574 pp

    Google Scholar 

  61. Woods RJ, Pikaev AK (1994) Applied radiation chemistry, radiation processing. Wiley, New York, 535 pp

    Google Scholar 

  62. Davydov R, Makris TM, Kofman V, Werst DE, Sligar SG, Hoffman BM (2001) Hydroxylation of camphor by reduced oxy-cytochrome P450cam: Mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes. J Am Chem Soc 123:1403–1415

    Article  CAS  PubMed  Google Scholar 

  63. Denisov IG, Victoria DC, Sligar SG (2007) Cryoradiolytic reduction of heme proteins: Maximizing dose-dependent yield. Radiat Phys Chem 76:714–721

    Article  CAS  Google Scholar 

  64. Davydov R, Kuprin S, Graeslund A, Ehrenberg A (1994) Electron paramagnetic resonance study of the mixed-valent diiron center in Escherichia coli ribonucleotide reductase produced by reduction of radical-free protein R2 at 77 K. J Am Chem Soc 116:11120–11128

    Article  CAS  Google Scholar 

  65. Davydov R, Ledbetter-Rogers A, Martasek P, Larukhin M, Sono M, Dawson JH, Siler Masters BS, Hoffman BM (2002) EPR and ENDOR characterization of intermediates in the cryoreduced oxy-nitric oxide synthase heme domain with bound l-arginine or N-hydroxyarginine. Biochemistry 41:10375–10381

    Article  CAS  PubMed  Google Scholar 

  66. Davydov R, Kofman V, Fujii H, Yoshida T, Ikeda-Saito M, Hoffman BM (2002) Catalytic mechanism of heme oxygenase through EPR and ENDOR of cryoreduced oxy-heme oxygenase and its Asp 140 mutants. J Am Chem Soc 124:1798–1808

    Article  CAS  PubMed  Google Scholar 

  67. Garcia-Serres R, Davydov RM, Matsui T, Ikeda-Saito M, Hoffman BM, Huynh BH (2007) Distinct reaction pathways followed upon reduction of oxy-heme oxygenase and oxy-myoglobin as characterized by Mossbauer spectroscopy. J Am Chem Soc 129:1402–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Davydov R, Osborne RL, Kim SH, Dawson JH, Hoffman BM (2008) EPR and ENDOR studies of cryoreduced Compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes. Biochemistry 47:5147–5155

    Article  CAS  PubMed  Google Scholar 

  69. Denisov IG, Mak PJ, Makris TM, Sligar SG, Kincaid JR (2008) Resonance Raman characterization of the peroxo and hydroperoxo intermediates in cytochrome P450. J Phys Chem A 112:13172–13179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Denisov IG, Makris TM, Sligar SG (2002) Formation and decay of hydroperoxo-ferric heme complex in horseradish peroxidase studied by cryoradiolysis. J Biol Chem 277:42706–42710

    Article  CAS  PubMed  Google Scholar 

  71. Mak PJ, Denisov IG, Victoria D, Makris TM, Deng T, Sligar SG, Kincaid JR (2007) Resonance Raman detection of the hydroperoxo intermediate in the cytochrome P450 enzymatic cycle. J Am Chem Soc 129:6382–6383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mak PJ, Kincaid JR (2008) Resonance Raman spectroscopic studies of hydroperoxo derivatives of cobalt-substituted myoglobin. J Inorg Biochem 102:1952–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Davydov R, Kappl R, Huettermann J, Peterson JA (1991) EPR-spectroscopy of reduced oxyferrous-P450cam. FEBS Lett 295:113–115

    Article  CAS  PubMed  Google Scholar 

  74. Makris TM, Davydov R, Denisov IG, Hoffman BM, Sligar SG (2002) Mechanistic enzymology of oxygen activation by the cytochromes P450. Drug Metab Rev 34:691–708

    Article  CAS  PubMed  Google Scholar 

  75. Makris TM, Von Koenig K, Schlichting I, Sligar SG (2007) Alteration of P450 distal pocket solvent leads to impaired proton delivery and changes in heme geometry. Biochemistry 46:14129–14140

    Article  CAS  PubMed  Google Scholar 

  76. Gasyna Z (1979) Intermediate spin-states in one-electron reduction of oxygen-hemoprotein complexes at low temperature. FEBS Lett 106:213–218

    Article  CAS  PubMed  Google Scholar 

  77. Denisov IG, Makris TM, Sligar SG (2001) Cryotrapped reaction intermediates of cytochrome P450 studied by radiolytic reduction with phosphorus-32. J Biol Chem 276:11648–11652

    Article  CAS  PubMed  Google Scholar 

  78. Denisov IG, Dawson JH, Hager LP, Sligar SG (2007) The ferric-hydroperoxo complex of chloroperoxidase. Biochem Biophys Res Commun 363:954–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ibrahim M, Denisov IG, Makris TM, Kincaid JR, Sligar SG (2003) Resonance Raman spectroscopic studies of hydroperoxo-myoglobin at cryogenic temperatures. J Am Chem Soc 125:13714–13718

    Article  CAS  PubMed  Google Scholar 

  80. Ibrahim M, Kincaid JR (2004) Spectroscopic studies of peroxo/hydroperoxo derivatives of heme proteins and model compounds. J Porphyrins Phthalocyanines 8:215–225

    Article  CAS  Google Scholar 

  81. Sligar SG, Makris TM, Denisov IG (2005) Thirty years of microbial P450 monooxygenase research: Peroxo-heme intermediates: the central bus station in heme oxygenase catalysis. Biochem Biophys Res Commun 338:346–354

    Article  CAS  PubMed  Google Scholar 

  82. Gantt SL, Denisov IG, Grinkova YV, Sligar SG (2009) The critical iron–oxygen intermediate in human aromatase. Biochem Biophys Res Commun 387:169–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schuler RH (1994) Three decades of spectroscopic studies of radiation produced intermediates. Radiat Phys Chem 43:417–423

    Article  CAS  Google Scholar 

  84. Douzou P, Balny C (1978) Protein fractionation at subzero temperatures. Adv Protein Chem 32:77–189

    Article  CAS  PubMed  Google Scholar 

  85. Bonfils C, Saldana JL, Debey P, Maurel P, Balny C, Douzou P (1979) Fast photochemical reactions of cytochrome P450 at subzero temperatures. Biochimie 61:681–687

    Article  CAS  PubMed  Google Scholar 

  86. Douzou P (1982) Developments in low-temperature biochemistry and biology. Proc R Soc Lond B 217:1–28

    Article  CAS  PubMed  Google Scholar 

  87. Douzou P (1983) Cryoenzymology. Cryobiology 20:625–635

    Article  CAS  PubMed  Google Scholar 

  88. Daniel RM, Smith JC, Ferrand M, Hery S, Dunn R, Finney JL (1998) Enzyme activity below the dynamical transition at 220 K. Biophys J 75:2504–2507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gasyna Z (1980) Unusual spin-state transitions in the reduction of ferrylmyoglobin at low temperature. Biochem Biophys Res Comm 93:637–644

    Article  CAS  PubMed  Google Scholar 

  90. Gasyna Z, Browett WR, Stillman MJ (1988) Low-temperature magnetic circular dichroism studies of the photoreaction of horseradish peroxidase compound I. Biochemistry 27:2503–2509

    Article  CAS  PubMed  Google Scholar 

  91. Browett WR, Gasyna Z, Stillman MJ (1988) Temperature dependence and electronic transition energies in the magnetic circular dichroism spectrum of horeseradish peroxidase compound I. J Am Chem Soc 110:3633–3640

    Article  CAS  Google Scholar 

  92. Zollfrank J, Friedrich J, Vanderkooi JM, Fidy J (1991) Conformational relaxation of a low-temperature protein as probed by photochemical hole burning. Horseradish peroxidase. Biophys J 59:305–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Manas ES, Vanderkooi JM, Sharp KA (1999) The effects of protein environment on the low temperature electronic spectroscopy of cytochrome c and microperoxidase-11. J Phys Chem 103B:6334–6348

    Article  CAS  Google Scholar 

  94. Wright WW, Carlos Baez J, Vanderkooi JM (2002) Mixed trehalose/sucrose glasses used for protein incorporation as studied by infrared and optical spectroscopy. Anal Biochem 307:167–172

    Article  CAS  PubMed  Google Scholar 

  95. Khajehpour M, Rietveld I, Vinogradov S, Prabhu NV, Sharp KA, Vanderkooi JM (2003) Accessibility of oxygen with respect to the heme pocket in horseradish peroxidase. Proteins 53:656–666

    Article  CAS  PubMed  Google Scholar 

  96. Zelent B, Nucci NV, Vanderkooi JM (2004) Liquid and ice water and glycerol/water glasses compared by infrared spectroscopy from 295 to 12 K. J Phys Chem A 108:11141–11150

    Article  CAS  Google Scholar 

  97. Nibbs J, Vinogradov SA, Vanderkooi JM, Zelent B (2004) Flexibility in proteins: tuning the sensitivity to O2 diffusion by varying the lifetime of a phosphorescent sensor in horseradish peroxidase. Photochem Photobiol 80:36–40

    Article  CAS  PubMed  Google Scholar 

  98. Ponkratov VV, Wiedersich J, Friedrich J, Vanderkooi JM (2007) Experiments with proteins at low temperature: what do we learn on properties in their functional state? J Chem Phys 126:16510–16514

    Article  CAS  Google Scholar 

  99. Austin RH, Beeson KW, Eisenstein L, Frauenfelder H, Gunsalus IC (1975) Dynamics of ligand binding to myoglobin. Biochemistry 14:5355–5373

    Article  CAS  PubMed  Google Scholar 

  100. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603

    Article  CAS  PubMed  Google Scholar 

  101. Chen G, Fenimore PW, Frauenfelder H, Mezei F, Swenson J, Young RD (2008) Protein fluctuations explored by inelastic neutron scattering and dielectric relaxation spectroscopy. Phil Mag 88:3877–3883

    Article  CAS  Google Scholar 

  102. Perrella M, Heyda A, Mosca A, Rossi-Bernardi L (1978) Isoelectric focusing and electrophoresis at subzero temperatures. Anal Biochem 88:212–224

    Article  CAS  PubMed  Google Scholar 

  103. Perrella M, Benazzi L, Cremonesi L, Vesely S, Viggiano G, Berger RL (1983) Subzero temperature quenching and electrophoretic methods for the isolation of protein reaction intermediates. J Biochem Biophys Meth 7:187–197

    Article  CAS  PubMed  Google Scholar 

  104. Perrella M, Denisov I (1995) Low-temperature electrophoresis methods. Meth Enzymol 259:468–487

    Article  CAS  PubMed  Google Scholar 

  105. Balny C, Le Peuch C, Debey P (1975) Low temperature column chromatography: application to microsomal hydroxylating system. Anal Biochem 63:321–330

    Article  CAS  PubMed  Google Scholar 

  106. Balny C, Debey P, Douzou P (1976) The sub-zero temperature chromatographic isolation of transient intermediates of a multi-step cycle: preparation of the substrate-free oxy-ferrous cytochrome P450. FEBS Lett 69:236–239

    Article  CAS  PubMed  Google Scholar 

  107. Debey P, Balny C, Douzou P (1973) Enzyme assay in microsomes below zero degrees. Proc Natl Acad Sci U S A 70:2633–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the contribution into development of these methods and collaboration with Drs. T.M. Makris, I. Schlichting, B.M. Hoffman, R.M. Davydov, M. Ikeda-Saito, J.R. Kincaid, and P.J. Mak, much of which resulted in the cited works. We appreciate the help provided by Dr. S. Toshkov at the Nuclear Radiation Lab, University of Illinois, Urbana-Champaign, and Dr. J. Bentley while using the 60Co source in the Notre Dame Radiation Laboratory (Notre Dame University, IN). Irradiations were conducted partly at the Notre Dame Radiation Laboratory, which is a facility of the U.S. Department of Energy, Office of Basic Energy Sciences. This work is supported by NIH grants GM31756 and GM33775 to S.G.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Sligar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Denisov, I.G., Grinkova, Y.V., Sligar, S.G. (2012). Cryoradiolysis and Cryospectroscopy for Studies of Heme-Oxygen Intermediates in Cytochromes P450. In: Bujalowski, W. (eds) Spectroscopic Methods of Analysis. Methods in Molecular Biology, vol 875. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-806-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-806-1_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-805-4

  • Online ISBN: 978-1-61779-806-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics