Skip to main content

Single-Molecule Force Spectroscopy of Polycystic Kidney Disease Proteins

  • Protocol
  • First Online:
Spectroscopic Methods of Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 875))

Abstract

Atomic force microscopy in its single-molecule force spectroscopy mode is a nanomanipulation technique that is extensively used for the study of the mechanical properties of proteins. It is particularly suited to examine their response to stretching (i.e., molecular elasticity and mechanical stability). Here, we describe protein engineering strategies and single-molecule AFM techniques for probing protein mechanics, with special emphasis on polycystic kidney disease (PKD) proteins. We also provide step-by-step protocols for preparing proteins and performing single-molecule force measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10:63–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Praetorius HA, Spring KR (2003) Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol 191:69–76

    Article  CAS  PubMed  Google Scholar 

  3. Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79

    Article  CAS  PubMed  Google Scholar 

  4. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  CAS  PubMed  Google Scholar 

  5. Qian F, Wei W, Germino G, Oberhauser A (2005) The nanomechanics of polycystin-1 extracellular region. J Biol Chem 280:40723–40730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Forman JR, Qamar S, Paci E, Sandford RN, Clarke J (2005) The remarkable mechanical strength of polycystin-1 supports a direct role in mechanotransduction. J Mol Biol 349:861–871

    Article  CAS  PubMed  Google Scholar 

  7. Oberhauser AF, Carrion-Vazquez M (2008) Mechanical biochemistry of proteins one molecule at a time. J Biol Chem 283:6617–6621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carrion-Vazquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li H, Fernandez JM (2000) Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog Biophys Mol Biol 74:63–91

    Article  CAS  PubMed  Google Scholar 

  9. Fisher TE, Carrion-Vazquez M, Oberhauser AF, Li H, Marszalek PE, Fernandez JM (2000) Single molecular force spectroscopy of modular proteins in the nervous system. Neuron 27:435–446

    Article  CAS  PubMed  Google Scholar 

  10. Fisher TE, Marszalek PE, Oberhauser AF, Carrion-Vazquez M, Fernandez JM (1999) The micro-mechanics of single molecules studied with atomic force microscopy. J Physiol 520(Pt 1):5–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fisher TE, Oberhauser AF, Carrion-Vazquez M, Marszalek PE, Fernandez JM (1999) The study of protein mechanics with the atomic force microscope. Trends Biochem Sci 24:379–384

    Article  CAS  PubMed  Google Scholar 

  12. Best RB, Clarke J (2002) What can atomic force microscopy tell us about protein folding? Chem Commun (Camb) (3):183–192

    Google Scholar 

  13. Rounsevell RW, Steward A, Clarke J (2005) Biophysical investigations of engineered polyproteins: implications for force data. Biophys J 88:2022–2029

    Article  CAS  PubMed  Google Scholar 

  14. Linke WA, Grutzner A (2008) Pulling single molecules of titin by AFM – recent advances and physiological implications. Pflugers Arch 456:101–115

    Article  CAS  PubMed  Google Scholar 

  15. Muller DJ, Krieg M, Alsteens D, Dufrene YF (2009) New frontiers in atomic force microscopy: analyzing interactions from single-molecules to cells. Curr Opin Biotechnol 20(1):4–13

    Article  CAS  PubMed  Google Scholar 

  16. Samori B (2000) Stretching single molecules along unbinding and unfolding pathways with the scanning force microscope. Chemistry 6:4249–4255

    Article  CAS  PubMed  Google Scholar 

  17. Mehta AD, Rief M, Spudich JA (1999) Biomechanics, one molecule at a time. J Biol Chem 274:14517–14520

    Article  CAS  PubMed  Google Scholar 

  18. Rief M, Grubmuller H (2002) Force spectroscopy of single biomolecules. Chemphyschem 3:255–261

    Article  CAS  PubMed  Google Scholar 

  19. Rabbi M, Marszalek PM (2008) Probing polysaccharide and protein mechanics by atomic force microscopy. In: Selvin PR, Ha T (eds) Single-molecule techniques. Cold Spring Harbor Laboratory Press, New York, pp 371–394

    Google Scholar 

  20. Rounsevell R, Forman JR, Clarke J (2004) Atomic force microscopy: mechanical unfolding of proteins. Methods 34:100–111

    Article  CAS  PubMed  Google Scholar 

  21. Carrion-Vazquez M, Oberhauser AF, Diez H, Hervas R, Oroz J, Fernandez J, Martinez-Martín D (2006) Protein Nanomechanics – as studied by AFM single-molecule force spectroscopy. In: Arrondo JL, Alonso A (eds) Advance techniques in biophysics. Springer, Berlin, pp 163–245

    Chapter  Google Scholar 

  22. Lim II, Ip W, Crew E, Njoki PN, Mott D, Zhong CJ, Pan Y, Zhou S (2007) Homocysteine-mediated reactivity and assembly of gold nanoparticles. Langmuir 23:826–833

    Article  CAS  PubMed  Google Scholar 

  23. Petean I, Tomoaia G, Horovitz O, Mocanu A, Tomoaia-Cotisel M (2008) Cysteine mediated assembly of gold nanoparticles. J Optoelectron Adv Mater 10:2289–2292

    CAS  Google Scholar 

  24. Bustamante C, Macosko JC, Wuite GJ (2000) Grabbing the cat by the tail: manipulating molecules one by one. Nat Rev Mol Cell Biol 1:130–136

    Article  CAS  PubMed  Google Scholar 

  25. Steward A, Toca-Herrera JL, Clarke J (2002) Versatile cloning system for construction of multimeric proteins for use in atomic force microscopy. Protein Sci 11:2179–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li H, Carrion-Vazquez M, Oberhauser AF, Marszalek PE, Fernandez JM (2000) Point mutations alter the mechanical stability of immunoglobulin modules. Nat Struct Biol 7:1117–1120

    Article  CAS  PubMed  Google Scholar 

  27. Oberhauser AF, Badilla-Fernandez C, Carrion-Vazquez M, Fernandez JM (2002) The mechanical hierarchies of fibronectin observed with single-molecule AFM. J Mol Biol 319:433–447

    Article  CAS  PubMed  Google Scholar 

  28. Sundberg M, Rosengren JP, Bunk R, Lindahl J, Nicholls IA, Tagerud S, Omling P, Montelius L, Mansson A (2003) Silanized surfaces for in vitro studies of actomyosin function and nanotechnology applications. Anal Biochem 323:127–138

    Article  CAS  PubMed  Google Scholar 

  29. Sakaki N, Shimo-Kon R, Adachi K, Itoh H, Furuike S, Muneyuki E, Yoshida M, Kinosita K Jr (2005) One rotary mechanism for F1-ATPase over ATP concentrations from millimolar down to nanomolar. Biophys J 88:2047–2056

    Article  CAS  PubMed  Google Scholar 

  30. Florin EL, Rief M, Lehmann H, Ludwig M, Dornmair C, Moy VT, Gaub HE (1995) Sensing specific molecular-interactions with the atomic-force microscope. Biosens Bioelectron 10:895–901

    Article  CAS  Google Scholar 

  31. Oberhauser AF, Hansma PK, Carrion-Vazquez M, Fernandez JM (2001) Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc Natl Acad Sci USA 98:468–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bustamante C, Marko JF, Siggia ED, Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265:1599–1600

    Article  CAS  PubMed  Google Scholar 

  33. Marko JF, Siggia ED (1995) Statistical-mechanics of supercoiled DNA. Phys Rev E 52:2912–2938

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH grant R01DK073394, the John Sealy Memorial Endowment Fund for Biomedical Research, and by the Polycystic Kidney Foundation (grant 116a2r).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres F. Oberhauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ma, L., Xu, M., Oberhauser, A.F. (2012). Single-Molecule Force Spectroscopy of Polycystic Kidney Disease Proteins. In: Bujalowski, W. (eds) Spectroscopic Methods of Analysis. Methods in Molecular Biology, vol 875. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-806-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-806-1_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-805-4

  • Online ISBN: 978-1-61779-806-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics