Skip to main content

Detection of Specific Strains of Viable Bacterial Pathogens by Using RNA Bead Assays and Flow Cytometry with 2100 Bioanalyzer

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 875))

Abstract

Bead assays are an emerging microbial detection technology with the capability for rapid detection of extremely low levels of viable pathogens. Such technologies are of high value in clinical settings and in the food industry. Here, we perform a bead assay for extracted 16S rRNA from Escherichia coli (strain K12) with the flow cytometry readout on a 2100 Bioanalyzer, a highly accurate, small-scale flow cytometer system.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Delehanty JB, Ligler FS (2002) A microarray immunoassay for simultaneous detection of proteins and bacteria. Anal Chem 74:5681–5687

    Article  CAS  PubMed  Google Scholar 

  2. McClelland RG, Pinder AC (1994) Detection of Salmonella typhimurium in dairy products with flow cytometry and monoclonal antibodies. Appl Environ Microbiol 60:4255–4262

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jarvis RM, Goodacre R (2004) Ultra-violet resonance Raman spectroscopy for the rapid discrimination of urinary tract infection bacteria. FEMS Microbiol Lett 232:127–132

    Article  CAS  PubMed  Google Scholar 

  4. Manoharan R, Ghiamati E, Dalterio RA, Britton KA, Nelson WH, Sperry JF (1990) UV resonance Raman spectra of bacteria, bacterial spores, protoplasts and calcium dipicolinate. J Microbiol Methods 11:1–15

    Article  CAS  Google Scholar 

  5. Belgrader P, Benett W, Hadley D et al (1990) Infectious disease—PCR detection of bacteria in seven minutes. Science 284:449–450

    Article  Google Scholar 

  6. Hinata N, Shirakawa T, Okada H, Shigemura K, Kamidono S, Gotoh A (2004) Quantitative detection of Escherichia coli from urine of patients with bacteriuria by real-time PCR. Mol Diagn 8:179–184

    Article  PubMed  Google Scholar 

  7. Pugia MJ, Sommer RG, Kuo HH, Corey PF, Gopual DL, Lott JA (2004) Near-patient testing for infection using urinalysis and immuno-chromatography strips. Clin Chem Lab Med 42:340–346

    Article  CAS  PubMed  Google Scholar 

  8. Desai MJ, Armstrong DW (2003) Separation, identification, and characterization of microorganisms by capillary electrophoresis. Microbiol Mol Biol Rev 67:38–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhatta H, Goldys EM, Learmonth RP (2006) Use of fluorescence spectroscopy to differentiate yeast and bacterial cells. Appl Microbiol Biotechnol 71:121–126

    Article  CAS  PubMed  Google Scholar 

  10. Giana HE, Silveira L, Zângaro RA, Pacheco MTT (2003) Rapid Identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis. J Fluoresc 13:489–493

    Article  CAS  Google Scholar 

  11. Basu M, Seggerson S, Henshaw J et al (2004) Nano-biosensor development for bacterial detection during human kidney infection: use of glycoconjugate-specific antibody-bound gold NanoWire arrays (GNWA). Glycoconj J 21:487–496

    Article  CAS  PubMed  Google Scholar 

  12. Ateya DA, Erickson JS, Howell PB Jr, Hilliard LR, Golden JP, Ligler FS (2008) The good, the bad, and the tiny: a review of microflow cytometry. Anal Bioanal Chem 391: 1485–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neidhardt FC, Umbarger E (1996) In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Reznikiff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. AMS Press, Washington 1:2822

    Google Scholar 

  14. Joachimsthal EL, Ivanov V, Tay STL, Tay JH (2003) Quantification of whole-cell in situ hybridization with oligonucleotide probes by flow cytometry of Escherichia coli cells. World J Microbiol Biotechnol 19:527–533

    Article  CAS  Google Scholar 

  15. Stender H, Broomer AJ, Oliveira K et al (2001) Rapid detection, identification, and enumeration of Escherichia coli cells in municipal water by chemiluminescent in situ hybridization. Appl Environ Microbiol 67:142–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16 S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Diaz MR, Fell JW (2004) High-throughput detection of pathogenic yeasts of the genus Trichosporon. J Clin Microbiol 42:3696–3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fitzgerald C, Collins M, van Duyne S, Mikoleit M, Brown T, Fields P (2007) Multiplex, bead-based suspension array for molecular determination of common Salmonella serogroups. J Clin Microbiol 45:3323–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iannone MA, Taylor JD, Chen J et al (2000) Multiplexed single nucleotide polymorphism genotyping by oligonucleotide ligation and flow cytometry. Cytometry 39:131–140

    Article  CAS  PubMed  Google Scholar 

  20. Spiro A, Lowe M, Brown D (2000) A bead-based method for multiplexed identification and quantitation of DNA sequences using flow cytometry. Appl Environ Microbiol 66:4258–4265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilson WJ, Erler AM, Nasarabadi SL, Skowronski EW, Imbro PM (2005) A multiplexed PCR-coupled liquid bead array for the simultaneous detection of four biothreat agents. Mol Cell Probes 19:137–144

    Article  CAS  PubMed  Google Scholar 

  22. Nitsche R (2002) Cell fluorescence assays on the Agilent 2100 Bioanalyzer—general use. Agilent Technologies.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Butterworth, P., Baltar, H.T.M.C.M., Kratzmeier, M., Goldys, E.M. (2012). Detection of Specific Strains of Viable Bacterial Pathogens by Using RNA Bead Assays and Flow Cytometry with 2100 Bioanalyzer. In: Bujalowski, W. (eds) Spectroscopic Methods of Analysis. Methods in Molecular Biology, vol 875. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-806-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-806-1_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-805-4

  • Online ISBN: 978-1-61779-806-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics