Skip to main content

Optimized Protocols to Analyze Sphingosine-1-Phosphate Signal Transduction Pathways During Acrosomal Exocytosis in Human Sperm

  • Protocol
  • First Online:
Book cover Sphingosine-1-Phosphate

Part of the book series: Methods in Molecular Biology ((MIMB,volume 874))

Abstract

Regulated secretion is a central issue for the specific function of many cells; for instance, mammalian sperm acrosomal exocytosis is essential for egg fertilization. Sphingosine 1-phosphate is a bioactive sphingolipid that regulates crucial physiological processes. We have recently reported that sphingosine 1-phosphate and sphingosine kinase are involved in a novel signaling pathway leading to acrosomal exocytosis (Suhaiman L et al., J Biol Chem 285:1630–16314, 2010). Acrosomal exocytosis in mammalian sperm is a regulated secretion with unusual characteristics. We therefore employed biochemical functional assays to assess the sphingolipid signaling in both permeabilized and nonpermeabilized sperm. The exocytosis of the acrosomal content is regulated by Ca2+. During exocytosis, changes in [Ca2+]i occur induced by either Ca2+-influx or Ca2+-mobilization from intracellular stores. By using single cell [Ca2+] measurements, we detected intracellular Ca2+ changes after sphingosine 1-phosphate treatment. Additionally, measuring sphingosine kinase activity, we determined that sphingosine 1-phosphate levels increase after an exocytotic stimulus.

This chapter is designed to provide the user with sufficient background to analyze sphingosine 1-­phosphate signal transduction pathways during acrosomal exocytosis in human sperm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suhaiman L, De Blas GA, Obeid LM, Darszon A, Mayorga LS, Belmonte SA (2010) Sphingosine 1-phosphate and sphingosine kinase are involved in a novel signaling pathway leading to acrosomal exocytosis. J Biol Chem 285:16302–16314

    Article  PubMed  CAS  Google Scholar 

  2. Darszon A, Acevedo JJ, Galindo BE, Hernandez-Gonzalez EO, Nishigaki T, Trevino CL, Wood C, Beltran C (2006) Sperm channel diversity and functional multiplicity. Reproduction 131:977–988

    Article  PubMed  CAS  Google Scholar 

  3. Yanagimachi R (1994) Mammalian fertilization. In: Knobil E and Neill JD (ed) The physiology of reproduction. Raven, New York, pp 189–317

    Google Scholar 

  4. Mayorga LS, Tomes CN, Belmonte SA (2007) Acrosomal exocytosis, a special type of regulated secretion. IUBMB Life 59:286–292

    Article  PubMed  CAS  Google Scholar 

  5. Kirkman-Brown JC, Barratt CL, Publicover SJ (2003) Nifedipine reveals the existence of two discrete components of the progesterone-induced [Ca2+]i transient in human spermatozoa. Dev Biol 259:71–82

    Article  PubMed  CAS  Google Scholar 

  6. Jungnickel MK, Marrero H, Birnbaumer L, Lemos JR, Florman HM (2001) Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol 3:499–502

    Article  PubMed  CAS  Google Scholar 

  7. Breitbart H (2003) Signaling pathways in sperm capacitation and acrosome reaction. Cell Mol Biol (Noisy-le-Grand) 49:321–327

    CAS  Google Scholar 

  8. Darszon A, Beltran C, Felix R, Nishigaki T, Trevino CL (2001) Ion transport in sperm ­signaling. Dev Biol 240:1–14

    Article  PubMed  CAS  Google Scholar 

  9. Zanetti N, Mayorga LS (2009) Acrosomal swelling and membrane docking are required for hybrid vesicle formation during the human sperm acrosome reaction. Biol Reprod 81: 396–405

    Article  PubMed  CAS  Google Scholar 

  10. Spiegel S, English D, Milstien S (2002) Sphingosine 1-phosphate signaling: providing cells with a sense of direction. Trends Cell Biol 12:236–242

    Article  PubMed  CAS  Google Scholar 

  11. Kohama T, Olivera A, Edsall L, Nagiec MM, Dickson R, Spiegel S (1998) Molecular ­cloning and functional characterization of murine sphingosine kinase. J Biol Chem 273: 23722–23728

    Article  PubMed  CAS  Google Scholar 

  12. Taha TA, Hannun YA, Obeid LM (2006) Sphingosine kinase: biochemical and cellular regulation and role in disease. J Biochem Mol Biol 39:113–131

    Article  PubMed  CAS  Google Scholar 

  13. Hla T, Lee MJ, Ancellin N, Paik JH, Kluk MJ (2001) Lysophospholipids-receptor revelations. Science 294:1875–1878

    Article  PubMed  CAS  Google Scholar 

  14. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407

    Article  PubMed  CAS  Google Scholar 

  15. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    Article  PubMed  CAS  Google Scholar 

  16. Taha TA, Argraves KM, Obeid LM (2004) Sphingosine-1-phosphate receptors: receptor specificity versus functional redundancy. Biochim Biophys Acta 1682:48–55

    PubMed  CAS  Google Scholar 

  17. Yatomi Y (2006) Sphingosine 1-phosphate in vascular biology: possible therapeutic strategies to control vascular diseases. Curr Pharm Des 12:575–587

    Article  PubMed  CAS  Google Scholar 

  18. Rosen H, Goetzl EJ (2005) Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5:560–570

    Article  PubMed  CAS  Google Scholar 

  19. Pébay A, Toutant M, Premont J, Calvo CF, Venance L, Cordier J, Glowinski J, Tence M (2001) Sphingosine-1-phosphate induces proliferation of astrocytes: regulation by intracellular signalling cascades. Eur J Neurosci 13:2067–2076

    Article  Google Scholar 

  20. Sanchez T, Hla T (2004) Structural and ­functional characteristics of S1P receptors. J Cell Biochem 92:913–922

    Article  PubMed  CAS  Google Scholar 

  21. Spiegel S, Milstien S (2003) Exogenous and intracellularly generated sphingosine 1-­phosphate can regulate cellular processes by divergent ­pathways. Biochem Soc Trans 31:1216–1219

    Article  PubMed  CAS  Google Scholar 

  22. Anelli V, Bassi R, Tettamanti G, Viani P, Riboni L (2005) Extracellular release of newly synthesized sphingosine-1-phosphate by cerebellar granule cells and astrocytes. J Neurochem 92:1204–1215

    Article  PubMed  CAS  Google Scholar 

  23. Kajimoto T, Okada T, Yu H, Goparaju SK, Jahangeer S, Nakamura S (2007) Involvement of sphingosine-1-phosphate in glutamate secretion in hippocampal neurons. Mol Cell Biol 27:3429–3440

    Article  PubMed  CAS  Google Scholar 

  24. Lopez CI, Belmonte SA, De Blas GA, Mayorga LS (2007) Membrane-permeant Rab3A triggers acrosomal exocytosis in living human sperm. FASEB J 21:4121–4130

    Article  PubMed  CAS  Google Scholar 

  25. Arnoult C, Villaz M, Florman HM (1998) Pharmacological properties of the T-type Ca2+ current of mouse spermatogenesis cells. Mol Pharmacol 53:1104–1111

    PubMed  CAS  Google Scholar 

  26. Fox AP, Nowycky MC, Tsien RW (1987) Single-channel recordings of three types of ­calcium channels in chick sensory neurones. J Physiol 394:173–200

    PubMed  CAS  Google Scholar 

  27. Gonzalez-Martinez MT, Galindo BE, de De La TL, Zapata O, Rodriguez E, Florman HM, Darszon A (2001) A sustained increase in intracellular Ca(2+) is required for the acrosome reaction in sea urchin sperm. Dev Biol 236:220–229

    Article  PubMed  CAS  Google Scholar 

  28. Yunes R, Michaut M, Tomes C, Mayorga LS (2000) Rab3A triggers the acrosome reaction in permeabilized human spermatozoa. Biol Reprod 62:1084–1089

    Article  PubMed  CAS  Google Scholar 

  29. Yunes R, Tomes C, Michaut M, De BG, Rodriguez F, Regazzi R, Mayorga LS (2002) Rab3A and calmodulin regulate acrosomal exocytosis by mechanisms that do not require a direct interaction. FEBS Lett 525:126–130

    Article  PubMed  CAS  Google Scholar 

  30. Belmonte SA, Lopez CI, Roggero CM, De Blas GA, Tomes CN, Mayorga LS (2005) Cholesterol content regulates acrosomal exocytosis by enhancing Rab3A plasma membrane association. Dev Biol 285:393–408

    Article  PubMed  CAS  Google Scholar 

  31. De Blas GA, Roggero CM, Tomes CN, Mayorga LS (2005) Dynamics of SNARE assembly and disassembly during sperm acrosomal exocytosis. PLoS Biol 3:e323

    Article  PubMed  Google Scholar 

  32. Roggero CM, Tomes CN, De Blas GA, Castillo J, Michaut MA, Fukuda M, Mayorga LS (2005) Protein kinase C-mediated phosphorylation of the two polybasic regions of synaptotagmin VI regulates their function in acrosomal exocytosis. Dev Biol 285:422–435

    Article  PubMed  CAS  Google Scholar 

  33. Branham MT, Bustos MA, De Blas GA, Rehmann H, Zarelli VE, Trevino CL, Darszon A, Mayorga LS, Tomes CN (2009) Epac ­activates the small G proteins Rap1 and Rab3A to achieve exocytosis. J Biol Chem 284:24825–24839

    Article  PubMed  CAS  Google Scholar 

  34. De Blas G, Michaut M, Trevino CL, Tomes CN, Yunes R, Darszon A, Mayorga LS (2002) The intraacrosomal calcium pool plays a direct role in acrosomal exocytosis. J Biol Chem 277:49326–49331

    Article  PubMed  Google Scholar 

  35. Roggero CM, De Blas GA, Dai H, Tomes CN, Rizo J, Mayorga LS (2007) Complexin/synaptotagmin interplay controls acrosomal exocytosis. J Biol Chem 282:26335–26343

    Article  PubMed  CAS  Google Scholar 

  36. Castillo BJ, Roggero CM, Mancifesta FE, Mayorga LS (2010) Calcineurin-mediated dephosphorylation of synaptotagmin VI is necessary for acrosomal exocytosis. J Biol Chem 285:26269–26278

    Article  Google Scholar 

  37. World Health Organization (2010) WHO laboratory manual for the examination and processing of human semen. World Health Organization, Geneva, Switzerland

    Google Scholar 

  38. Mendoza C, Carreras A, Moos J, Tesarik J (1992) Distinction between true acrosome reaction and degenerative acrosome loss by a one-step staining method using Pisum sativum agglutinin. J Reprod Fertil 95:755–763

    Article  PubMed  CAS  Google Scholar 

  39. Pickett JA, Campos-Toimil M, Thomas P, Edwardson JM (2007) Identification of SNAREs that mediate zymogen granule exocytosis. Biochem Biophys Res Commun 359:599–603

    Article  PubMed  CAS  Google Scholar 

  40. Deeney JT, Branstrom R, Corkey BE, Larsson O, Berggren PO (2007) 3H-serotonin as a marker of oscillatory insulin secretion in clonal beta-cells (INS-1). FEBS Lett 581:4080–4084

    Article  PubMed  CAS  Google Scholar 

  41. Waselle L, Gerona RR, Vitale N, Martin TF, Bader MF, Regazzi R (2005) Role of phosphoinositide signaling in the control of insulin exocytosis. Mol Endocrinol 19:3097–3106

    Article  PubMed  CAS  Google Scholar 

  42. Vitale N, Mukai H, Rouot B, Thierse D, Aunis D, Bader MF (1993) Exocytosis in chromaffin cells. Possible involvement of the heterotrimeric GTP-binding protein G(o). J Biol Chem 268:14715–14723

    PubMed  CAS  Google Scholar 

  43. Alouf JE, Geoffroy C (1988) Production, purification, and assay of streptolysin O. Methods Enzymol 165:52–59

    Article  PubMed  CAS  Google Scholar 

  44. Bhakdi S, Tranum-Jensen J, Sziegoleit A (1985) Mechanism of membrane damage by streptolysin-O. Infect Immun 47:52–60

    PubMed  CAS  Google Scholar 

  45. Sekiya K, Satoh R, Danbara H, Futaesaku Y (1993) A ring-shaped structure with a crown formed by streptolysin O on the erythrocyte membrane. J Bacteriol 175:5953–5961

    PubMed  CAS  Google Scholar 

  46. Sekiya K (1995) Electron-microscopic observation of pore formation in the erythrocyte membrane by streptolysin O. Nippon Saikingaku Zasshi 50:509–517

    Article  PubMed  CAS  Google Scholar 

  47. Sekiya K, Akagi T, Tatsuta K, Sakakura E, Hashikawa T, Abe A, Nagamune H (2007) Ultrastructural analysis of the membrane ­insertion of domain 3 of streptolysin O. Microbes Infect 9:1341–1350

    Article  PubMed  CAS  Google Scholar 

  48. De Blas GA, Darszon A, Ocampo AY, Serrano CJ, Castellano LE, Hernandez-Gonzalez EO, Chirinos M, Larrea F, Beltran C, Trevino CL (2009) TRPM8, a versatile channel in human sperm. PLoS One 4:e6095

    Article  PubMed  Google Scholar 

  49. Chavez JC, De Blas GA, De la Vega-Beltran JL, Nishigaki T, Chirinos M, Gonzalez-Gonzalez ME, Larrea F, Solis A, Darszon A, Trevino CL (2011) The opening of maitotoxin-sensitive calcium channels induces the acrosome reaction in human spermatozoa: differences from the zona pellucida. Asian J Androl 13:159–165

    Article  PubMed  CAS  Google Scholar 

  50. Anelli V, Gault CR, Cheng AB, Obeid LM (2008) Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells. Role of hypoxia-inducible factors 1 and 2. J Biol Chem 283:3365–3375

    Article  PubMed  CAS  Google Scholar 

  51. Makler A (1980) The improved ten-­micrometer chamber for rapid sperm count and motility evaluation. Fertil Steril 33:337–338

    PubMed  CAS  Google Scholar 

  52. Cardona-Maya W, Berdugo J, Cadavid A (2008) Comparing the sperm concentration determined by the Makler and the Neubauer chambers. Actas Urol Esp 32:443–445

    Article  PubMed  CAS  Google Scholar 

  53. Imade GE, Towobola OA, Sagay AS, Otubu JA (1993) Discrepancies in sperm count using improved Neubauer, Makler, and Horwells counting chambers. Arch Androl 31:17–22

    Article  PubMed  CAS  Google Scholar 

  54. Harrison RA, Gadella BM (2005) Bicarbonate-induced membrane processing in sperm capacitation. Theriogenology 63:342–351

    Article  PubMed  CAS  Google Scholar 

  55. Visconti PE (2009) Understanding the molecular basis of sperm capacitation through kinase design. Proc Natl Acad Sci USA 106:667–668

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. L. Mayorga for valuable discussions and ­critical reading, graduate student L. Pelletán for art work, Drs. C. Tomes, G. De Blas, and J. Castillo Bennett for critical reading, graduate students M. Bustos and L. Pelletán for extensive contribution in protocol details and critical reading. This work was supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina and Secretaría de Ciencia, Técnica y Postgrado, National University of Cuyo, Argentina (to SAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia A. Belmonte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Belmonte, S.A., Suhaiman, L. (2012). Optimized Protocols to Analyze Sphingosine-1-Phosphate Signal Transduction Pathways During Acrosomal Exocytosis in Human Sperm. In: Pébay, A., Turksen, K. (eds) Sphingosine-1-Phosphate. Methods in Molecular Biology, vol 874. Humana Press. https://doi.org/10.1007/978-1-61779-800-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-800-9_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-799-6

  • Online ISBN: 978-1-61779-800-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics